Abstract
Automatic detection and segmentation of thyroid nodules is crucial for the identification of benign and malignant nodules in computer-aided diagnosis (CAD) systems. However, the diverse sizes of thyroid nodules in ultrasound images, nodules with complex internal textures, and multiple nodules pose many challenges for automatic detection and segmentation of thyroid nodules in ultrasound images. In this paper we propose a multi-task network based on Trident network, called MTN-Net, to accurately detect and segment the thyroid nodules in ultrasound images. The backbone of MTN-Net can generate scale-specific feature maps through trident blocks with different receptive fields to detect thyroid nodules with different sizes. In addition, a novel semantic segmentation branch is embedded into the detection network for the task of segmenting thyroid nodules, which is also valid for the complete segmentation of nodules with complex textures. Furthermore, we propose an improved NMS method, named TN-NMS, for combining thyroid detection results from multiple branches, which can effectively suppress falsely detected internal nodules. The experimental results show that MTN-Net outperforms the State-of-the-Arts methods in terms of detection and segmentation accuracy on both the public TN3K dataset and the public DDTI dataset, which indicates that our method can be applied to CAD systems with practical clinical significance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Haugen, B.R., et al.: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016)
Savelonas, M.A., Iakovidis, D.K., Legakis, I., Maroulis, D.: Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans. Inf. Technol. Biomed. 13(4), 519–527 (2008)
Chen, J., You, H., Li, K.: A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Methods Progr. Biomed. 185, 105329 (2020)
Li, H., et al.: An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci. Rep. 8(1), 1–12 (2018)
Liu, R., Zhou, S., Guo, Y., Wang, Y., Chang, C.: Nodule localization in thyroid ultrasound images with a joint-training convolutional neural network. J. Digital Imaging 33(5), 1266–1279 (2020)
Abdolali, F., Kapur, J., Jaremko, J.L., Noga, M., Hareendranathan, A.R., Punithakumar, K.: Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks. Comput. Biol. Med. 122, 103871 (2020)
Song, W., et al.: Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J. Biomed. Health Inform. 23(3), 1215–1224 (2018)
Shahroudnejad, A., et al.: TUN-Det: a novel network for thyroid ultrasound nodule detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 656–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_62
Ying, X., et al.: Thyroid nodule segmentation in ultrasound images based on cascaded convolutional neural network. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11306, pp. 373–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04224-0_32
Wang, M., et al.: Automatic segmentation and classification of thyroid nodules in ultrasound images with convolutional neural networks. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 109–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_14
Gong, H., et al.: Multi-task learning for thyroid nodule segmentation with thyroid region prior. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 257–261. IEEE (2021) https://doi.org/10.1109/ISBI48211.2021.9434087
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 1–9 (2015)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017). https://doi.org/10.48550/arXiv.1612.03144
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017). https://doi.org/10.48550/arXiv.1703.06870
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018). https://doi.org/10.48550/arXiv.1802.02611
Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6054–6063 (2019). https://doi.org/10.1109/ICCV.2019.00615
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169
Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561–5569 (2017). https://doi.org/10.1109/ICCV.2017.593
Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., Romero, E.: An open access thyroid ultrasound image database. In: 10th International Symposium on Medical Information Processing and Analysis. vol. 9287, p. 92870W. International Society for Optics and Photonics (2015). https://doi.org/10.1117/12.2073532
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)
Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019). https://doi.org/10.1109/CVPR.2019.00657
Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020). https://doi.org/10.1109/CVPR42600.2020.00982
Chen, K., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Acknowledgements
This research is funded by East China Normal University-Qiniu Intelligent Learning Joint Laboratory. The computation is supported by ECNU Multifunctional Platform for Innovation (001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, L., Zheng, W., Hu, W. (2022). MTN-Net: A Multi-Task Network for Detection and Segmentation of Thyroid Nodules in Ultrasound Images. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-10989-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10988-1
Online ISBN: 978-3-031-10989-8
eBook Packages: Computer ScienceComputer Science (R0)