Abstract
Previous natural image matting algorithms have difficulties with transition regions in the foreground and background, such as tiny and detailed structures like hair. This paper argues that more efficient low-level features can help the network recover details with minor increases in network capacity and computational complexity. The proposed method, termed low-level feature channel guidance net LFCGN, has two advantages: 1) it introduces a low-level feature channel attention module designed to make the model parameters more efficient and can even lead to high-level feature map generation. 2) a dynamic upsampling is used in the decoder stage, making the detail part recover more efficiently. Experiments are evaluated on the Composition-1k dataset, and the experimental results show that our method obtained competitive performance compared to the state-of-the-art on task of image matting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, S., et al.: Disentangled image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8819–8828 (2019)
Chen, Q., Li, D., Tang, C.K.: KNN matting. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2175–2188 (2013)
Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 618–626 (2018)
Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian approach to digital matting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-II. IEEE (2001)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
He, B., Wang, G., Shi, C., Yin, X., Liu, B., Lin, X.: Iterative transductive learning for alpha matting. In: 2013 IEEE International Conference on Image Processing, pp. 4282–4286. IEEE (2013)
He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A global sampling method for alpha matting. In: CVPR 2011, pp. 2049–2056. IEEE (2011)
Hou, Q., Liu, F.: Context-aware image matting for simultaneous foreground and alpha estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4130–4139 (2019)
Hu, F., Lakdawala, S., Hao, Q., Qiu, M.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf. Technol. Biomed. 13(4), 656–663 (2009)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Ke, Z., et al.: Is a green screen really necessary for real-time portrait matting? arXiv preprint arXiv:2011.11961 (2020)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2007)
Li, J., Zhang, J., Maybank, S.J., Tao, D.: End-to-end animal image matting. arXiv e-prints pp. arXiv-2010 (2020)
Li, Y., Lu, H.: Natural image matting via guided contextual attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11450–11457 (2020)
Li, Y., Song, Y., Jia, L., Gao, S., Li, Q., Qiu, M.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans. Ind. Inf. 17(4), 2833–2841 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lu, H., Dai, Y., Shen, C., Xu, S.: Indices matter: learning to index for deep image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3266–3275 (2019)
Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)
Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1826–1833. IEEE (2009)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015 Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Sengupta, S., Jayaram, V., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Background matting: the world is your green screen. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2291–2300 (2020)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Wang, J., Cohen, M.F.: An iterative optimization approach for unified image segmentation and matting. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005) Volume 1, vol. 2, pp. 936–943. IEEE (2005)
Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, H., Wu, S., He, D., Xiao, G. (2022). Natural Image Matting with Low-Level Feature Attention Guidance. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-031-10989-8_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10988-1
Online ISBN: 978-3-031-10989-8
eBook Packages: Computer ScienceComputer Science (R0)