Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Software and Hardware Fusion Multi-Head Attention

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Abstract

Recently, Transformer has achieved state-of-the-arts results in several research areas such as Natural Language Processing and Computer Vision. Due to Transformer has a very large number of parameters and its core module Multi-Head Attention has a complex structure, the optimization of Multi-Head Attention for Transformer is now the research hotspots. However, most of the current work focused on software model optimization or hardware accelerator design, but unilateral optimization from algorithms or hardware is difficult to give full play to comprehensive performance of Multi-Head Attention, which is not well adapted to its characteristics. To solve the above problem, we propose a Software and Hardware Fusion Multi-Head Attention structure, which has less inference latency with tiny accuracy loss than the existing software optimization methods and hardware accelerators. We implement this design on Xilinx ZCU102 and validate this model accuracy and inference time using CIFAR-10 dataset, and obtained accuracy within 1% loss with respect to the baseline, and inference time 15.19 times of the baseline.

This paper is supported by the National Natural Science Foundation of China under Grant No. 61972293.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Devlin, J., Chang, M., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: 9th ICLR (2021)

    Google Scholar 

  3. Ham, T.J., Jung, S.J., Kim, S., et al.: A\(^{\wedge }\)3: accelerating attention mechanisms in neural networks with approximation. In: IEEE HPCA, pp. 328–341 (2020)

    Google Scholar 

  4. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  5. Khan, H., Khan, A., et al.: NPE: an FPGA-based overlay processor for natural language processing. In: ACM/SIGDA FPGA, p. 227 (2021)

    Google Scholar 

  6. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  7. Lan, Z., Chen, M., Goodman, S., et al.: ALBERT: a lite BERT for self-supervised learning of language representations. In: 8th ICLR (2020)

    Google Scholar 

  8. Li, B., Pandey, S., Fang, H., et al.: FTRANS: energy-efficient acceleration of transformers using FPGA. In: ACM/IEEE ISLPED, pp. 175–180 (2020)

    Google Scholar 

  9. Li, Y., et al.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE TII 17(4), 2833–2841 (2020)

    Google Scholar 

  10. Liu, M., Zhang, S., et al.: H infinite state estimation for discrete-time chaotic systems based on a unified model. IEEE Trans, SMC (B) (2012)

    Google Scholar 

  11. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: IEEE/CVF CV, pp. 10012–10022 (2021)

    Google Scholar 

  12. Liu, Z., Li, G., Cheng, J.: Hardware acceleration of fully quantized BERT for efficient natural language processing, March 2021

    Google Scholar 

  13. Lu, S., Wang, M., et al.: Hardware accelerator for multi-head attention and position-wise feed-forward in the transformer. In: 33rd IEEE SoCC, pp. 84–89 (2020)

    Google Scholar 

  14. Lu, Z., Wang, N., et al.: IoTDeM: an IoT big data-oriented mapReduce performance prediction extended model in multiple edge clouds. J. Parallel Distrib. Comput. 118, 316–327 (2018)

    Article  Google Scholar 

  15. Niu, J., Gao, Y., et al.: Selecting proper wireless network interfaces for user experience enhancement with guaranteed probability. J. Parallel Distrib. Comput. 72, 1565–1575 (2012)

    Article  Google Scholar 

  16. Qiu, H., et al.: Secure health data sharing for medical cyber-physical systems for the healthcare 4.0. IEEE J. Bio. Health Inf. 24, 2499–2505 (2020)

    Google Scholar 

  17. Qiu, L., Gai, K., Qiu, M.: Optimal big data sharing approach for tele-health in cloud computing. In: IEEE SmartCloud, pp. 184–189 (2016)

    Google Scholar 

  18. Qiu, M., Cao, D., et al.: Data transfer minimization for financial derivative pricing using Monte Carlo simulation with GPU in 5G. Int. J. Comm. Sys. 29(16), 2364–2374 (2016)

    Article  Google Scholar 

  19. Qiu, M., Gai, K., Xiong, Z.: Privacy-preserving wireless communications using bipartite matching in social big data. Fut. Gene. Comput. Syst. 87, 772–781 (2018)

    Article  Google Scholar 

  20. Qiu, M., Guo, M., et al.: Loop scheduling and bank type assignment for heterogeneous multi-bank memory. J. Parallel Distrib. Comput. 69, 546–558 (2009)

    Article  Google Scholar 

  21. Qiu, M., Li, H., Sha, E.: Heterogeneous real-time embedded software optimization considering hardware platform. In: ACM SAC, pp. 1637–1641 (2009)

    Google Scholar 

  22. Qiu, M., Liu, J., et al.: A novel energy-aware fault tolerance mechanism for wireless sensor networks. In: 2011 IEEE/ACM International Conference on Green Computing and Communications (2011)

    Google Scholar 

  23. Qiu, M., Xue, C., et al.: Efficient algorithm of energy minimization for heterogeneous wireless sensor network. In: IEEE EUC, pp. 25–34 (2006)

    Google Scholar 

  24. Qiu, M., et al.: Energy minimization with soft real-time and DVS for uniprocessor and multiprocessor embedded systems. In: IEEE DATE, pp. 1–6 (2007)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  26. Wang, S., Li, B.Z., et al.: Linformer: Self-attention with linear complexity. CoRR abs/2006.04768 (2020). https://arxiv.org/abs/2006.04768

  27. Wang, W., Bi, B., Yan, M., et al.: StructBERT: incorporating language structures into pre-training for deep language understanding. In: 8th ICLR (2020)

    Google Scholar 

  28. Wu, G., Zhang, H., et al.: A decentralized approach for mining event correlations in distributed system monitoring. J. Parallel Distrib. Comput. 73(3), 330–340 (2013)

    Article  Google Scholar 

  29. Wu, Z., Liu, Z., Lin, J., Lin, Y., Han, S.: Lite transformer with long-short range attention. In: 8th ICLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, W., Xu, D., Liu, F., Fan, Z. (2022). Software and Hardware Fusion Multi-Head Attention. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10989-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10988-1

  • Online ISBN: 978-3-031-10989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics