Abstract
Prostate cancer is the most frequent male neoplasm in European men. To date, the gold standard for determining the aggressiveness of this tumor is the biopsy, an invasive and uncomfortable procedure. Before the biopsy, physicians recommend an investigation by multiparametric magnetic resonance imaging, which may serve the radiologist to gather an initial assessment of the tumor. The study presented in this work aims to investigate the role of Vision Transformers in predicting prostate cancer aggressiveness based only on imaging data. We designed a 3D Vision Transformer able to process volumetric scans, and we optimized it on the ProstateX-2 challenge dataset by training it from scratch. As a term of comparison, we also designed a 3D Convolutional Neural Network, and we optimized it in a similar fashion. The results obtained by our preliminary investigations show that Vision Transformers, even without extensive optimization and customization, can ensure an improved performance with respect to Convolutional Neural Networks and might be comparable with other more fine-tuned solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization, I.A.f.R.o.C: Fact sheet on cancer incidence in Europe (2020). https://gco.iarc.fr/today/data/factsheets/populations/908-europe-fact-sheets.pdf
Turkbey, B., et al.: Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76(3), 340–351 (2019). https://doi.org/10.1016/j.eururo.2019.02.033
Barentsz, J.O., et al.: PI-RADS prostate imaging-reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016). https://doi.org/10.1016/j.eururo.2015.08.052
Mohler, J.L., et al.: Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl Compreh. Cancer Netw. 17(5), 479–505 (2019). https://doi.org/10.6004/jnccn.2019.0023
Vickers, A.J.: Effects of magnetic resonance imaging targeting on overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 80(5), 567–572 (2021). https://doi.org/10.1016/j.eururo.2021.06.026
Liu, S., Zheng, H., Feng, Y., Li, W.: Prostate cancer diagnosis using deep learning with 3d multiparametric MRI. Med. Imaging 2017: Comput. Aid. Diagn. 10134, 581–584 (2017). SPIE https://doi.org/10.48550/arXiv.1703.04078
Mehrtash, A., et al.: Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. In: Medical Imaging 2017: Comput. Aid. Diagn. 10134, 101342 (2017). International Society for Optics and Photonics https://doi.org/10.1117/12.2277123
Mehta, P., Antonelli, M., Ahmed, H.U., Emberton, M., Punwani, S., Ourselin, S.: Computer-aided diagnosis of prostate cancer using multiparametric mri and clinical features: A patient-level classification framework. Med. Image Anal. 73, 102153 (2021). https://doi.org/10.1016/j.media.2021.102153
Song, Y., et al.: Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J. Magn. Reson. Imaging 48(6), 1570–1577 (2018). https://doi.org/10.1002/jmri.26047
Yuan, Y., et al.: Prostate cancer classification with multiparametric MRI transfer learning model. Med. Phys. 46(2), 756–765 (2019). https://doi.org/10.1002/mp.13367
Bertelli, E., et al.: Machine and deep learning prediction of prostate cancer aggressiveness using multiparametric MRI. Front. Oncol. 11, 802964–802964 (2021). https://doi.org/10.3389/fonc.2021.802964
Mehta, P., et al.: Autoprostate: towards automated reporting of prostate MRI for prostate cancer assessment using deep learning. Cancers 13(23), 6138 (2021). https://doi.org/10.3390/cancers13236138
Wang, Z., Liu, C., Cheng, D., Wang, L., Yang, X., Cheng, K.-T.: Automated detection of clinically significant prostate cancer in MP-MRI images based on an end-to-end deep neural network. IEEE Trans Medi. Imag. 37(5), 1127–1139 (2018). https://doi.org/10.1109/TMI.2017.2789181
Yoo, S., Gujrathi, I., Haider, M.A., Khalvati, F.: Prostate cancer detection using deep convolutional neural networks. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/s41598-019-55972-4
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020). https://doi.org/10.48550/arXiv.2010.11929
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229 (2020). https://doi.org/10.48550/arXiv.2005.12872
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021). https://doi.org/10.48550/arXiv.2103.13413
Matsoukas, C., Haslum, J.F., Söderberg, M., Smith, K.: Is it time to replace CNNs with transformers for medical images. arXiv preprint arXiv:2108.09038 (2021). https://doi.org/10.48550/arXiv.2108.09038
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Prostatex challenge data. Cancer Imag. Arch. 10, 9 (2017)
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. Curran Associates, Inc. (2019). https://doi.org/10.48550/arXiv.1912.01703
Chollet, F., et al.: Keras. GitHub (2015). https://github.com/fchollet/keras
Developers, T.: TensorFlow. Zenodo (2021). https://doi.org/10.5281/zenodo.5593257
Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2
Pedregosa, F.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.5555/1953048.2078195
Mason, D., Scaramallion, Rhaxton, Mrbean-Bremen, Suever, J., Vanessasaurus: pydicom/pydicom: pydicom 2.1.2. Zenodo (2020). https://doi.org/10.5281/zenodo.4313150
Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015)
Reback, J., McKinney, W., jbrockmendel, den Bossche, J.V., Augspurger, T., Cloud, P.: pandas-dev/pandas: Pandas 1.2.4. Zenodo (2021). https://doi.org/10.5281/zenodo.4681666
Van Rossum, G.: The Python Library Reference, release 3.8.2. Python Software Foundation (2020)
Acknowledgements
The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952159 (ProCAncer-I) and from the Regional Project PAR FAS Tuscany - NAVIGATOR. The funders had no role in the design of the study, collection, analysis and interpretation of data, or writing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pachetti, E., Colantonio, S., Pascali, M.A. (2022). On the Effectiveness of 3D Vision Transformers for the Prediction of Prostate Cancer Aggressiveness. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13374. Springer, Cham. https://doi.org/10.1007/978-3-031-13324-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-13324-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13323-7
Online ISBN: 978-3-031-13324-4
eBook Packages: Computer ScienceComputer Science (R0)