Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Cuprotosis-Related Gene Signature Predicts Survival Outcomes in Patients with Clear-Cell Renal Cell Carcinoma

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

Abstract

Objective To construct the prognosis model of cuprotosis-related genes in clear-cell renal cell carcinoma patients. Methods The mRNA and relate clinical data of patients with ccRCC were retrieved from TCGA. LASSO Cox regression model utilized to construct a multigene signature. Results Most cuprotosis-related genes were differentially expressed between tumour tissues and paired para-neoplasm tissues. Four correlated with overall survival (OS) in the univariate Cox regression analysis (P < 0.05). Three genes were selected to construct a signature, and the patients divided into two risk groups. Compared with patients in the low-risk group, patients in the high-risk group had significantly lower OS (P < 0.05, statistically significant). The model’s risk score showed a significant difference in univariate and multivariate Cox regression analysis. Receiver operating characteristic (ROC) curve analysis confirmed the signature’s predictive ability. Immune cell correlation analysis showed that the immune status was different within risk groups, and there were significant differences in the scores of CD8+ T cells, CD4+ T cells, B cells, NK cells and macrophages. Conclusion, The newly constructed prognosis model of cuprotosis-related genes (FDX1, DLD and CDKN2A) can accurately predict the prognosis of patients. Moreover, targeting cuprotosis is also likely to become a new treatment option for ccRCC.

Z. Zhan and P. Han—Contributed to the work equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye, Y., et al.: LncRNA MALAT1 modified progression of clear cell kidney carcinoma (KIRC) by regulation of miR-194-5p/ACVR2B signaling. Mol. Carcinog. 58(2), 279–292 (2019). https://doi.org/10.1002/mc.22926

    Article  Google Scholar 

  2. Zhao, H., et al.: Dynamic prognostic model for kidney renal clear cell carcinoma (KIRC) patients by combining clinical and genetic information. Sci. Rep. 8(1), 17613 (2018). https://doi.org/10.1038/s41598-018-35981-5

    Article  Google Scholar 

  3. Zhang, B., et al.: The promising novel biomarkers and candidate small molecule drugs in kidney renal clear cell carcinoma: evidence from bioinformatics analysis of high-throughput data. Mol. Genet. Genomic Med. 7(5), e607 (2019). https://doi.org/10.1002/mgg3.607

    Article  Google Scholar 

  4. Chen, L., et al.: ACAT1 and metabolism-related pathways are essential for the progression of clear cell renal cell carcinoma (ccRCC), as determined by Co-expression network analysis. Front. Oncol. 9, 957 (2019). https://doi.org/10.3389/fonc.2019.00957

    Article  Google Scholar 

  5. Buonerba, D., et al.: outcomes associated with first-line anti-PD-1/ PD-L1 agents vs. sunitinib in patients with sarcomatoid renal cell carcinoma: a systematic review and meta-analysis. Cancers 12(2), 408 (2020). https://doi.org/10.3390/cancers12020408

    Article  Google Scholar 

  6. Capitanio, U., Montorsi, F.: Renal cancer. Lancet 387(10021), 894–906 (2016). https://doi.org/10.1016/S0140-6736(15)00046-X

    Article  Google Scholar 

  7. Tsvetkov, P., et al.: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586), 1254–1261 (2022). https://doi.org/10.1126/science.abf0529

    Article  Google Scholar 

  8. Szklarczyk, D., et al.: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39(Database), D561–D568 (2011). https://doi.org/10.1093/nar/gkq973

    Article  Google Scholar 

  9. Tsvetkov, P., et al.: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 15(7), 681–689 (2019). https://doi.org/10.1038/s41589-019-0291-9

    Article  Google Scholar 

  10. Sheftel, A.D., et al.: Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 107(26), 11775–11780 (2010). https://doi.org/10.1073/pnas.1004250107

    Article  Google Scholar 

  11. Strushkevich, N., MacKenzie, F., Cherkesova, T., Grabovec, I., Usanov, S., Park, H.-W.: Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc. Natl. Acad. Sci. U.S.A. 108(25), 10139–10143 (2011). https://doi.org/10.1073/pnas.1019441108

    Article  Google Scholar 

  12. Boehm, M., et al.: Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1. Photosynth. Res. 128(1), 45–57 (2015). https://doi.org/10.1007/s11120-015-0198-6

    Article  Google Scholar 

  13. Solmonson, A., DeBerardinis, R.J.: Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 293(20), 7522–7530 (2018). https://doi.org/10.1074/jbc.TM117.000259

    Article  Google Scholar 

  14. Rowland, E.A., Snowden, C.K., Cristea, I.M.: Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 42, 76–85 (2018). https://doi.org/10.1016/j.cbpa.2017.11.003

    Article  Google Scholar 

  15. Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D.R., Rouault, T.A.: Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim. Biophys. Acta. 1823(2), 484–492 (2012). https://doi.org/10.1016/j.bbamcr.2011.11.002

    Article  Google Scholar 

  16. Zhang, Z., et al.: FDX1 can impact the prognosis and mediate the metabolism of lung adenocarcinoma. Front. Pharmacol. 12, 749134 (2021). https://doi.org/10.3389/fphar.2021.749134

    Article  Google Scholar 

  17. Vaubel, R.A., Rustin, P., Isaya, G.: Mutations in the dimer interface of dihydrolipoamide dehydrogenase promote site-specific oxidative damages in yeast and human cells. J. Biol. Chem. 286(46), 40232–40245 (2011). https://doi.org/10.1074/jbc.M111.274415

    Article  Google Scholar 

  18. Ambrus, A., Torocsik, B., Tretter, L., Ozohanics, O., Adam-Vizi, V.: Stimulation of reactive oxygen species generation by disease-causing mutations of lipoamide dehydrogenase. Hum. Mol. Genet. 20(15), 2984–2995 (2011). https://doi.org/10.1093/hmg/ddr202

    Article  Google Scholar 

  19. Tahara, E.B., Barros, M.H., Oliveira, G.A., Netto, L.E., Kowaltowski, A.J.: Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging. FASEB J. 21(1), 274–283 (2007). https://doi.org/10.1096/fj.06-6686com

    Article  Google Scholar 

  20. Kareyeva, A.V., Grivennikova, V.G., Cecchini, G., Vinogradov, A.D.: Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production. FEBS Lett. 585(2), 385–389 (2011). https://doi.org/10.1016/j.febslet.2010.12.019

    Article  Google Scholar 

  21. Zündorf, G., Kahlert, S., Bunik, V.I., Reiser, G.: alpha-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Neuroscience 158(2), 610–616 (2009). https://doi.org/10.1016/j.neuroscience.2008.10.015

    Article  Google Scholar 

  22. Tarangelo, A., et al.: p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22(3), 569–575 (2018). https://doi.org/10.1016/j.celrep.2017.12.077

    Article  Google Scholar 

  23. Ponnusamy, L., Natarajan, S.R., Manoharan, R.: MARK2 potentiate aerobic glycolysis-mediated cell growth in breast cancer through regulating mTOR/HIF-1α and p53 pathways. J. Cell Biochem. 123(4), 759–771 (2022). https://doi.org/10.1002/jcb.30219

    Article  Google Scholar 

  24. Gonnella, R., et al.: Oxidant species are involved in T/B-mediated ERK1/2 phosphorylation that activates p53–p21 axis to promote KSHV lytic cycle in PEL cells. Free Radic. Biol. Med. 112, 327–335 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.08.005

    Article  Google Scholar 

  25. Pinto, M., et al.: Transient mitochondrial DNA double strand breaks in mice cause accelerated aging phenotypes in a ROS-dependent but p53/p21-independent manner. Cell Death Differ. 24(2), 288–299 (2017). https://doi.org/10.1038/cdd.2016.123

    Article  Google Scholar 

  26. Maddocks, O.D., et al.: Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493(7433), 542–546 (2013). https://doi.org/10.1038/nature11743

    Article  Google Scholar 

  27. Soussi, T., Béroud, C.: Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer. 1(3), 233–240 (2001). https://doi.org/10.1038/35106009

    Article  Google Scholar 

  28. Feng, Z., Lin, M., Wu, R.: The regulation of aging and longevity: a new and complex role of p53. Genes Cancer 2(4), 443–452 (2011). https://doi.org/10.1177/1947601911410223

    Article  Google Scholar 

  29. Zhang, H., Zhu, G.: Beyond promoter: the role of macrophage in invasion and progression of renal cell carcinoma. Curr. Stem Cell Res. Ther. 15(7), 588–596 (2020). https://doi.org/10.2174/1574888X15666200225093210

    Article  Google Scholar 

  30. Xu, W., Jiang, X., Guan, C., Gu, M.: The prognostic and predictive value of tumor infiltrating macrophage and neutrophil in patient with clear cell renal cell carcinoma: tumor infiltrating lymphocytes in renal cell carcinoma. Medicine (Baltimore) 99(46), e23181 (2020). https://doi.org/10.1097/MD.0000000000023181

    Article  Google Scholar 

  31. Strizova, Z., et al.: NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol. Oncol. 37(7), 503–509 (2019). https://doi.org/10.1016/j.urolonc.2019.03.014

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by Provincial Science and Technology Grant of Shanxi Province (20210302124588), Science and technology innovation project of Shanxi province universities (2019L0683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, Z., Han, P., Bi, X., Yang, J., Zhao, T. (2022). A Novel Cuprotosis-Related Gene Signature Predicts Survival Outcomes in Patients with Clear-Cell Renal Cell Carcinoma. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics