Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Membrane Protein Amphiphilic Helix Structure Prediction Based on Graph Convolution Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1766 Accesses

Abstract

The amphiphilic helix structure in membrane proteins is involved in membrane-related biological processes and has important research significance. In this paper, we constructed a new amphiphilic helix dataset containing 70 membrane proteins with a total of 18,458 amino acid residues. We extracted three commonly used protein features and predicted the membrane proteins amphiphilic helix structure using graph convolutional neural network. We improved the prediction accuracy of membrane proteins amphiphilic helix structure with the newly constructed dataset by rigorous 10-fold cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith, S.M.: Strategies for the purification of membrane proteins. Methods Mol. Biol. 681, 485–496 (2011)

    Article  Google Scholar 

  2. Cuthbertson, J., Sansom, M.: Structural bioinformatics and molecular simulations: looking at membrane proteins. Biochemist 4, 21–24 (2004)

    Google Scholar 

  3. Feng, S.H., Zhang, W.X., Yang, J., et al.: Topology Prediction Improvement of α-helical transmembrane proteins through Helix–tail modeling and multiscale deep learning fusion. J. Mol. Biol. 432(4), 1279–1296 (2019)

    Article  Google Scholar 

  4. Tsirigos, K.D., Govindarajan, S., Bassot, C., et al.: Topology of membrane proteins–predictions, limitations and variations. Curr. Opin. Struct. Biol. 50, 9–17 (2018)

    Article  Google Scholar 

  5. Drin, G., Casella, J.F., Gautier, R., et al.: A general amphipathic α–helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14(2), 138–146 (2007)

    Article  Google Scholar 

  6. Brady, J.P., Claridge, J.K., Smith, P.G., et al.: A conserved amphipathic helix is required for membrane tubule formation by Yop1p. Proc. Natl. Acad. Sci. 112(7), 639–648 (2015)

    Article  Google Scholar 

  7. Milletti, F.: Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17(15), 850–860 (2012)

    Article  Google Scholar 

  8. Schiffer, M., Edmundson, A.B.: Use of helical wheels to represent the structure of proteins and to identify segments with helical potential. Biophys. J. 7(2), 121–135 (1967)

    Article  Google Scholar 

  9. Rodaway, A., Sternberg, M., Bentley, D.L.: Similarity in membrane proteins. Nature 342(6250), 624 (1989)

    Article  Google Scholar 

  10. Eisenberg, D., Schwarz, E., Komaromy, M., et al.: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179(1), 125–142 (1984)

    Article  Google Scholar 

  11. Eisenberg, D., Weiss, R.M., Terwilliger, T.C.: The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299(5881), 371–374 (1982)

    Article  Google Scholar 

  12. Roberts, M.G., Phoenix, D.A., Pewsey, A.R.: An algorithm for the detection of surface active α helices with the potential to anchor proteins at the membrane interface. Bioinformatics 13(1), 99–106 (1997)

    Article  Google Scholar 

  13. Sapay, N., Guermeur, Y., Deléage, G.: Prediction of amphipathic in–plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinform. 7(1), 1–11 (2006)

    Article  Google Scholar 

  14. Feng, S.H., et al.: Ab-initio membrane protein amphipathic helix structure prediction using deep neural networks. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics/IEEE, p. 99. ACM (2020)

    Google Scholar 

  15. Tusnády, G.E., Zsuzsanna, D., István, S.: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33(suppl_1), D275–D278 (2005)

    Google Scholar 

  16. Li, W.Z., Adam, G., et al.: Cd–hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)

    Article  Google Scholar 

  17. Lomize, M.A., et al.: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(D1), 370–376 (2011)

    Google Scholar 

  18. Sussman, J.L., Lin, D., Jiang, J., et al.: Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. A 54(6–1), 1078–1084 (2010)

    Google Scholar 

  19. Daniel, W.A., et al.: Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 41(W1), W349–W357 (2013)

    Google Scholar 

  20. Remmert, M., Biegert, A., Hauser, A., et al.: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9(2), 173–175 (2012)

    Article  Google Scholar 

  21. Milot, M., von den Driesch Lars, Clovis, G., et al.: Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Research 45(D1), D170–D176 (2017)

    Google Scholar 

  22. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18(8), 2163–2170 (1990)

    Article  Google Scholar 

  23. Yang, J.Y., Peng, Z.L., Chen, X.: Prediction of protein structural classes for low-homology sequences based on predicted secondary structure. BMC Bioinform. 11(1), 1–10 (2010)

    Google Scholar 

  24. Olyaee, M.H., Yaghoubi, A., Yaghoobi, M.: Predicting protein structural classes based on complex networks and recurrence analysis. J. Theor. Biol. 404, 375–382 (2016)

    Article  Google Scholar 

  25. Luque, B., Lacasa, L., Ballesteros, F.: Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80(4), 046103 (2019)

    Article  Google Scholar 

  26. Gao, Z.K., Cai, Q., Yang, Y.X.: Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series. Sci. Rep. 6(1), 1–7 (2016)

    Google Scholar 

  27. Gligorijevi, V., Renfrew, P.D., Kosciolek, T., et al.: Structure–based protein function prediction using graph convolutional networks. Nat. Commun. 12(1), 1–14 (2021)

    Google Scholar 

  28. Chen, J., Zheng, S., Zhao, H., et al.: Structure–aware protein solubility prediction from sequence through graph convolutional network and predicted contact map. J. Cheminform. 13(1), 1–10 (2021)

    Article  Google Scholar 

  29. Yuan, Q., Chen, J., Zhao, H., et al.: Structure–aware protein-protein interaction site prediction using deep graph convolutional network. Bioinformatics 38(1), 125–132 (2022)

    Article  Google Scholar 

  30. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv 1609, 02907 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 61671220), University Innovation Team Project of Jinan (2019GXRC015), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, B., Meng, Q., Zhang, Q., Chen, Y. (2022). Membrane Protein Amphiphilic Helix Structure Prediction Based on Graph Convolution Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics