Abstract
The amphiphilic helix structure in membrane proteins is involved in membrane-related biological processes and has important research significance. In this paper, we constructed a new amphiphilic helix dataset containing 70 membrane proteins with a total of 18,458 amino acid residues. We extracted three commonly used protein features and predicted the membrane proteins amphiphilic helix structure using graph convolutional neural network. We improved the prediction accuracy of membrane proteins amphiphilic helix structure with the newly constructed dataset by rigorous 10-fold cross-validation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith, S.M.: Strategies for the purification of membrane proteins. Methods Mol. Biol. 681, 485–496 (2011)
Cuthbertson, J., Sansom, M.: Structural bioinformatics and molecular simulations: looking at membrane proteins. Biochemist 4, 21–24 (2004)
Feng, S.H., Zhang, W.X., Yang, J., et al.: Topology Prediction Improvement of α-helical transmembrane proteins through Helix–tail modeling and multiscale deep learning fusion. J. Mol. Biol. 432(4), 1279–1296 (2019)
Tsirigos, K.D., Govindarajan, S., Bassot, C., et al.: Topology of membrane proteins–predictions, limitations and variations. Curr. Opin. Struct. Biol. 50, 9–17 (2018)
Drin, G., Casella, J.F., Gautier, R., et al.: A general amphipathic α–helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14(2), 138–146 (2007)
Brady, J.P., Claridge, J.K., Smith, P.G., et al.: A conserved amphipathic helix is required for membrane tubule formation by Yop1p. Proc. Natl. Acad. Sci. 112(7), 639–648 (2015)
Milletti, F.: Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17(15), 850–860 (2012)
Schiffer, M., Edmundson, A.B.: Use of helical wheels to represent the structure of proteins and to identify segments with helical potential. Biophys. J. 7(2), 121–135 (1967)
Rodaway, A., Sternberg, M., Bentley, D.L.: Similarity in membrane proteins. Nature 342(6250), 624 (1989)
Eisenberg, D., Schwarz, E., Komaromy, M., et al.: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179(1), 125–142 (1984)
Eisenberg, D., Weiss, R.M., Terwilliger, T.C.: The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299(5881), 371–374 (1982)
Roberts, M.G., Phoenix, D.A., Pewsey, A.R.: An algorithm for the detection of surface active α helices with the potential to anchor proteins at the membrane interface. Bioinformatics 13(1), 99–106 (1997)
Sapay, N., Guermeur, Y., Deléage, G.: Prediction of amphipathic in–plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinform. 7(1), 1–11 (2006)
Feng, S.H., et al.: Ab-initio membrane protein amphipathic helix structure prediction using deep neural networks. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics/IEEE, p. 99. ACM (2020)
Tusnády, G.E., Zsuzsanna, D., István, S.: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33(suppl_1), D275–D278 (2005)
Li, W.Z., Adam, G., et al.: Cd–hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)
Lomize, M.A., et al.: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(D1), 370–376 (2011)
Sussman, J.L., Lin, D., Jiang, J., et al.: Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. A 54(6–1), 1078–1084 (2010)
Daniel, W.A., et al.: Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 41(W1), W349–W357 (2013)
Remmert, M., Biegert, A., Hauser, A., et al.: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9(2), 173–175 (2012)
Milot, M., von den Driesch Lars, Clovis, G., et al.: Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Research 45(D1), D170–D176 (2017)
Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18(8), 2163–2170 (1990)
Yang, J.Y., Peng, Z.L., Chen, X.: Prediction of protein structural classes for low-homology sequences based on predicted secondary structure. BMC Bioinform. 11(1), 1–10 (2010)
Olyaee, M.H., Yaghoubi, A., Yaghoobi, M.: Predicting protein structural classes based on complex networks and recurrence analysis. J. Theor. Biol. 404, 375–382 (2016)
Luque, B., Lacasa, L., Ballesteros, F.: Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80(4), 046103 (2019)
Gao, Z.K., Cai, Q., Yang, Y.X.: Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series. Sci. Rep. 6(1), 1–7 (2016)
Gligorijevi, V., Renfrew, P.D., Kosciolek, T., et al.: Structure–based protein function prediction using graph convolutional networks. Nat. Commun. 12(1), 1–14 (2021)
Chen, J., Zheng, S., Zhao, H., et al.: Structure–aware protein solubility prediction from sequence through graph convolutional network and predicted contact map. J. Cheminform. 13(1), 1–10 (2021)
Yuan, Q., Chen, J., Zhao, H., et al.: Structure–aware protein-protein interaction site prediction using deep graph convolutional network. Bioinformatics 38(1), 125–132 (2022)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv 1609, 02907 (2016)
Acknowledgment
This work was supported by the National Natural Science Foundation of China (Grant No. 61671220), University Innovation Team Project of Jinan (2019GXRC015), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF036).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jia, B., Meng, Q., Zhang, Q., Chen, Y. (2022). Membrane Protein Amphiphilic Helix Structure Prediction Based on Graph Convolution Network. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-13829-4_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13828-7
Online ISBN: 978-3-031-13829-4
eBook Packages: Computer ScienceComputer Science (R0)