Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Road Environment Perception for Unmanned Motion Platform Based on Binocular Vision

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13455))

Included in the following conference series:

  • 2884 Accesses

Abstract

In order to enable the unmanned motion platform to obtain real-time environmental semantic information and obstacle depth information, a real-time semantic segmentation and feature point matching based on binocular cameras are considered. This method firstly takes advantages of a real-time semantic segmentation network to obtain the road scene information and the region of obstacles on the road such as vehicles or pedestrians. Then, feature matching is performed on the region of interest (ROI) of left and right views. In the experiment part, firstly we conduct simulation verification on the KITTI dataset, and then we conduct binocular camera calibration, rectification, segmentation and stereo matching based on Oriented FAST and Rotated BRIEF (ORB) method on the actual system. The experiment results proves that the method is real-time and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Chen, Z., Li, J., Wang, J., Wang, S., Zhao, J., Li, J.: Towards hybrid gait obstacle avoidance for a six wheel-legged robot with payload transportation. J. Intell. Robot. Syst. 102(3), 1–21 (2021)

    Article  Google Scholar 

  3. Chen, Z., Li, J., Wang, S., Wang, J., Ma, L.: Flexible gait transition for six wheel-legged robot with unstructured terrains. Robot. Auton. Syst. 150, 103989 (2022)

    Article  Google Scholar 

  4. Dai, Y., Li, J., Wang, J., Li, J.: Towards extreme learning machine framework for lane detection on unmanned mobile robot. Assem. Autom. 42(3), 361–371 (2022)

    Article  Google Scholar 

  5. Dai, Y., Wang, J., Li, J., Li, J.: Mdrnet: a lightweight network for real-time semantic segmentation in street scenes. Assem. Autom. 41(6), 725–733 (2021)

    Article  Google Scholar 

  6. Fetić, A., Jurić, D., Osmanković, D.: The procedure of a camera calibration using camera calibration toolbox for matlab. In: 2012 Proceedings of the 35th International Convention MIPRO, pp. 1752–1757 (2012)

    Google Scholar 

  7. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 807–814. IEEE (2005)

    Google Scholar 

  8. Huang, H., Yang, C., Chen, C.L.P.: Optimal robot environment interaction under broad fuzzy neural adaptive control. IEEE Trans. Cybern. 51(7), 3824–3835 (2021)

    Article  Google Scholar 

  9. Li, J., Li, R., Li, J., Wang, J., Wu, Q., Liu, X.: Dual-view 3D object recognition and detection via lidar point cloud and camera image. Robot. Auton. Syst. 150, 103999 (2022)

    Article  Google Scholar 

  10. Li, J., Qin, H., Wang, J., Li, J.: Openstreetmap-based autonomous navigation for the four wheel-legged robot via 3D-lidar and CCD camera. IEEE Trans. Industr. Electron. 69(3), 2708–2717 (2022)

    Article  Google Scholar 

  11. Li, J., Wang, J., Peng, H., Hu, Y., Su, H.: Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 52(4), 2491–2500 (2022)

    Article  Google Scholar 

  12. Li, J., Wang, J., Peng, H., Zhang, L., Hu, Y., Su, H.: Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing 410, 342–353 (2020)

    Article  Google Scholar 

  13. Li, J., et al.: Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assem. Autom. 40(5), 675–687 (2020)

    Article  Google Scholar 

  14. Li, J., Wang, J., Wang, S., Yang, C.: Human-robot skill transmission for mobile robot via learning by demonstration. Neural Comput. Appl. 1–11 (2021). https://doi.org/10.1007/s00521-021-06449-x

  15. Li, J., Wang, S., Wang, J., Li, J., Zhao, J., Ma, L.: Iterative learning control for a distributed cloud robot with payload delivery. Assem. Autom. 41(3), 263–273 (2021)

    Article  Google Scholar 

  16. Li, J., Zhang, X., Li, J., Liu, Y., Wang, J.: Building and optimization of 3d semantic map based on lidar and camera fusion. Neurocomputing 409, 394–407 (2020)

    Article  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. ISPRS Ann. Photogram. Rem. Sens. Spat. Inf. Sci. 2, 427 (2015)

    Google Scholar 

  20. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  21. Peng, G., Yang, C., He, W., Chen, C.P.: Force sensorless admittance control with neural learning for robots with actuator saturation. IEEE Trans. Ind. Electron. 67(4), 3138–3148 (2019)

    Article  Google Scholar 

  22. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In :2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  23. S. Wang, Z. Chen, J. Li, J. Wang, J. Li, and J. Zhao. Flexible motion framework of the six wheel-legged robot: experimental results. IEEE/ASME Transactions on Mechatronics, pages 1–9, 2021

    Google Scholar 

  24. Yang, C., Peng, G., Cheng, L., Na, J., Li, Z.: Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks. IEEE Trans. Syst. Man Cybernet. Syst. 51(5), 3282–3292 (2021)

    Article  Google Scholar 

  25. Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N.: Bisenet v2: bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput. Vision 129(11), 3051–3068 (2021)

    Article  Google Scholar 

  26. Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 666–673 (1999)

    Google Scholar 

  27. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant 2019YFC1511401, and the National Natural Science Foundation of China under Grant 62173038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Wang, J., Li, J. (2022). Road Environment Perception for Unmanned Motion Platform Based on Binocular Vision. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics