Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improvement of NMR-Reduction Method by Local Search for Optimization of Number of Mesh Routers in WMNs

  • Conference paper
  • First Online:
Advances in Network-Based Information Systems (NBiS 2022)

Abstract

The Wireless Mesh Networks (WMNs) enable routers to communicate with each other wirelessly in order to create a stable network over a wide area at a low cost. There are different methods for optimizing the placement of mesh routers. In our previous work, we proposed a Coverage Construction Method (CCM), CCM-based Hill Climbing (HC) and CCM-based Simulated Annealing (SA) system for mesh router placement problem considering normal and uniform distributions of mesh clients. We also proposed a Delaunay edge and CCM-based SA and considered a realistic scenario for mesh client placement rather than randomly generated mesh clients with normal or uniform distributions. However, this approach required many mesh routers to cover mesh clients located over a wide area. For the Number of Mesh Routers (NMR) optimization, we proposed a NMR-Reduction method. In this paper, we propose an improvement of the NMR-Reduction method with local search to optimize the NMR in WMNs. For the simulations, we consider the evacuation areas in Okayama City, Japan, which is the target to be covered by mesh routers. The simulation results show that the proposed method was able to cover many mesh clients and reduce NMR by an average of about 30 [\(\%\)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz, I.F., et al.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    Article  Google Scholar 

  2. Oda, T., et al.: Implementation and experimental results of a WMN testbed in indoor environment considering LoS scenario. In: Proceedings of the IEEE 29th International Conference on Advanced Information Networking and Applications (IEEE AINA 2015), pp. 37–42 (2015)

    Google Scholar 

  3. Jun, J., et al.: The nominal capacity of wireless mesh networks. IEEE Wirel. Commun. 10(5), 8–15 (2003)

    Article  Google Scholar 

  4. Oyman, O., et al.: Multihop relaying for broadband wireless mesh networks: from theory to practice. IEEE Commun. Mag. 45(11), 116–122 (2007)

    Article  Google Scholar 

  5. Oda, T., et al.: Evaluation of WMN-GA for different mutation operators. Int. J. Space-Based and Situated Comput. 2(3), 149–157 (2012)

    Article  Google Scholar 

  6. Oda, T., et al.: Performance evaluation of WMN-GA for different mutation and crossover rates considering number of covered users parameter. Mob. Inf. Syst. 8(1), 1–16 (2012)

    MathSciNet  Google Scholar 

  7. Oda, T., et al.: WMN-GA: a simulation system for WMNs and its evaluation considering selection operators. J. Ambient. Intell. Humaniz. Comput. 4(3), 323–330 (2013). https://doi.org/10.1007/s12652-011-0099-2

    Article  Google Scholar 

  8. Oda, T., et al.: Node placement in WMNs using WMN-GA system considering uniform and normal distribution of mesh clients. In: Proceedings of the IEEE 8th International Conference on Complex, Intelligent and Software Intensive Systems (IEEE CISIS 2014), pp. 120–127 (2014)

    Google Scholar 

  9. Oda, T., et al.: A GA-based simulation system for WMNs: performance analysis for different WMN architectures considering TCP. In: Proceedings of the IEEE 9th International Conference on Broadband and Wireless Computing, Communication and Applications (IEEE BWCCA 2014), pp. 120–126 (2014)

    Google Scholar 

  10. Oda, T., et al.: Effects of population size for location-aware node placement in WMNs: evaluation by a genetic algorithm-based approach. Pers. Ubiquit. Comput. 18(2), 261–269 (2014). https://doi.org/10.1007/s00779-013-0643-5

    Article  Google Scholar 

  11. Ikeda, M., et al.: Analysis of WMN-GA simulation results: WMN performance considering stationary and mobile scenarios. In: Proceedings of the 28th IEEE International Conference on Advanced Information Networking and Applications (IEEE AINA 2014), pp. 337–342 (2014)

    Google Scholar 

  12. Oda, T., et al.: Analysis of mesh router placement in wireless mesh networks using Friedman test. In: Proceedings of the IEEE 28th International Conference on Advanced Information Networking and Applications (IEEE AINA 2014), pp. 289–296 (2014)

    Google Scholar 

  13. Oda, T., et al.: Effect of different grid shapes in wireless mesh network-genetic algorithm system. Int. J. Web Grid Serv. 10(4), 371–395 (2014)

    Article  Google Scholar 

  14. Oda, T., et al.: Analysis of mesh router placement in wireless mesh networks using Friedman test considering different meta-heuristics. Int. J. Commun. Netw. Distrib. Syst. 15(1), 84–106 (2015)

    Google Scholar 

  15. Oda, T., et al.: A genetic algorithm-based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. Soft. Comput. 20(7), 2627–2640 (2016). https://doi.org/10.1007/s00500-015-1663-z

    Article  Google Scholar 

  16. Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of intelligent hybrid systems for node placement in wireless mesh networks: a comparison study of WMN-PSOHC and WMN-PSOSA. In: Barolli, L., Enokido, T. (eds.) IMIS 2017. AISC, vol. 612, pp. 16–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61542-4_2

    Chapter  Google Scholar 

  17. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  18. Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the 11th International Conference on Machine Learning (ICML 1994), pp. 293–301 (1994)

    Google Scholar 

  19. Kirkpatrick, S., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  20. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)

    Article  Google Scholar 

  21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks (ICNN 1995), pp. 1942–1948 (1995)

    Google Scholar 

  22. Hirata, A., et al.: Approach of a solution construction method for mesh router placement optimization problem. In: Proceedings of the IEEE 9th Global Conference on Consumer Electronics (IEEE GCCE 2020), pp. 467–468 (2020)

    Google Scholar 

  23. Hirata, A., Oda, T., Saito, N., Hirota, M., Katayama, K.: A coverage construction method based hill climbing approach for mesh router placement optimization. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 355–364. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_35

    Chapter  Google Scholar 

  24. Hirata, A., Oda, T., Saito, N., Nagai, Y., Hirota, M., Katayama, K.: Simulation results of CCM based HC for mesh router placement optimization considering two Islands model of mesh clients distributions. In: Barolli, L., Natwichai, J., Enokido, T. (eds.) EIDWT 2021. LNDECT, vol. 65, pp. 180–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70639-5_17

    Chapter  Google Scholar 

  25. Hirata, A., et al.: A coverage construction and hill climbing approach for mesh router placement optimization: simulation results for different number of mesh routers and instances considering normal distribution of mesh clients. In: Barolli, L., Yim, K., Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278, pp. 161–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79725-6_16

    Chapter  Google Scholar 

  26. Hirata, A., Oda, T., Saito, N., Nagai, Y., Toyoshima, K., Barolli, L.: A CCM-based HC system for mesh router placement optimization: a comparison study for different instances considering normal and uniform distributions of mesh clients. In: Barolli, L., Chen, H.-C., Enokido, T. (eds.) NBiS 2021. LNNS, vol. 313, pp. 329–340. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84913-9_33

    Chapter  Google Scholar 

  27. Hirata, A., Oda, T., Saito, N., Yasunaga, T., Katayama, K., Barolli, L.: A simulation system for mesh router placement in WMNs considering coverage construction method and simulated annealing. In: Barolli, L. (ed.) BWCCA 2021. LNNS, vol. 346, pp. 78–87. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90072-4_8

    Chapter  Google Scholar 

  28. Hirata, A., Oda, T., Saito, N., Yasunaga, T., Katayama, K., Barolli, L.: A Delaunay edge and CCM-based SA approach for mesh router placement optimization in WMN: a case study for evacuation area in Okayama city. In: Barolli, L., Kulla, E., Ikeda, M. (eds.) EIDWT 2022. LNDECT, vol. 118, pp. 346–356. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95903-6_37

    Chapter  Google Scholar 

  29. Hirata, A., et al.: A new method for optimization of number of mesh routers and improving cost efficiency in wireless mesh networks. In: Barolli, L. (ed.) CISIS 2022. LNNS, vol. 497, pp. 37–48. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08812-4_5

    Chapter  Google Scholar 

  30. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  31. Integrated GIS for all of Okayama prefecture, 16 November 2021. http://www.gis.pref.okayama.jp/pref-okayama/OpenData

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K19793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirata, A. et al. (2022). Improvement of NMR-Reduction Method by Local Search for Optimization of Number of Mesh Routers in WMNs. In: Barolli, L., Miwa, H., Enokido, T. (eds) Advances in Network-Based Information Systems. NBiS 2022. Lecture Notes in Networks and Systems, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-031-14314-4_7

Download citation

Publish with us

Policies and ethics