Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Machine Learning Approach for Early Detection of Postpartum Depression in Bangladesh

  • Conference paper
  • First Online:
Brain Informatics (BI 2022)

Abstract

Postpartum depression is a severe mental health issue exhibited among perinatal women after the childbirth process. While the negative impact of postpartum depression is extensive in developing countries, there is a significant lack of proper tools and techniques to predict the disorder due to negligence. This work proposes a machine learning-based system for finding the risk factors and prevalence of postpartum depression in Bangladesh. We developed a survey of different socio-demographic questions and modified questions from two standard postpartum depression screening scales (EPDS, PHQ-2). Data from 150 women have been collected, processed, and implemented in different machine learning models to find—the best performing models. Based on the collected data of the perinatal women in Bangladesh, the best performing machine learning model was Random Forest. The performance metrics for the best model were AUC: 98%, Accuracy: 89%, and Sensitivity: 89%. The performance of the models varies from 88%–98% (AUC), 82%–89% (Accuracy), and 81%–89% (Sensitivity). We have also found the top risk factors for causing PPD. According to this work, the prevalence of PPD in Bangladesh is 66.7% (Considering the medium and high chance of PPD). This proposed work is the first to detect the risk factors and prevalence of PPD in Bangladesh using a machine learning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliani, R., Khuwaja, B.: Epidemiology of postpartum depression in pakistan: a review of literature. Natl. J. Health Sci. 2(1), 24–30 (2017). https://doi.org/10.21089/njhs.21.0024, http://njhsciences.com/wp-content/uploads/2017/02/6-Razia-Alini_MS.pdf

  2. Andersson, S., Bathula, D.R., Iliadis, S.I., Walter, M., Skalkidou, A.: Predicting women with depressive symptoms postpartum with machine learning methods. Sci. Rep. 11(1), 7877 (2021). https://doi.org/10.1038/s41598-021-86368-y, http://www.nature.com/articles/s41598-021-86368-y

  3. Ay, F.: Postpartum depression and the factors affecting It: 2000–2017 study results. J. Psychiatr. Nurs. 93, 147–152 (2018). https://doi.org/10.14744/phd.2018.31549, https://www.journalagent.com/phd/pdfs/PHD-31549-RESEARCH_ARTICLE-AY.pdf

  4. Azad, R., et al.: Prevalence and risk factors of postpartum depression within one year after birth in urban slums of Dhaka, Bangladesh. PLOS ONE 14(5), e0215735 (2019). https://doi.org/10.1371/journal.pone.0215735, https://dx.plos.org/10.1371/journal.pone.0215735

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953, arXiv: 1106.1813

  6. Chawla, N.V.: Data Mining For Imbalanced Datasets: An Overview. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook, pp. 853-867. Springer, Boston, MA (2005). https://doi.org/10.1007/0-387-25465-X_40

  7. Cox, J.L., Holden, J.M., Sagovsky, R.: Detection of postnatal depression. Development of the 10-item Edinburgh postnatal depression scale. Br. J. Psychiatr. J. Mental Sci. 150, 782–786 (1987). https://doi.org/10.1192/bjp.150.6.782

  8. De Choudhury, M., Counts, S., Horvitz, E.J., Hoff, A.: Characterizing and predicting postpartum depression from shared Facebook data. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 626–638. CSCW 2014, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2531602.2531675

  9. Gausia, K., Fisher, C., Ali, M., Oosthuizen, J.: Magnitude and contributory factors of postnatal depression: a community-based cohort study from a rural subdistrict of Bangladesh. Psychol. Med. 39(6), 999–1007 (2009). https://doi.org/10.1017/S0033291708004455

    Article  Google Scholar 

  10. Gausia, K., Fisher, C., Algin, S., Oosthuizen, J.: Validation of the Bangla version of the Edinburgh postnatal depression scale for a Bangladeshi sample. J. Reprod. Infant Psychol. 25, 308–315 (2007). https://doi.org/10.1080/02646830701644896

  11. Graham, S., et al.: Artificial intelligence for mental health and mental illnesses: an overview. Current Psychiatry Rep. 21(11), 1–18 (2019). https://doi.org/10.1007/s11920-019-1094-0

    Article  Google Scholar 

  12. Halbreich, U., Karkun, S.: Cross-cultural and social diversity of prevalence of postpartum depression and depressive symptoms. J. Affect. Disord. 91(2–3), 97–111 (2006). https://doi.org/10.1016/j.jad.2005.12.051

    Article  Google Scholar 

  13. Insan, N., Weke, A., Forrest, S., Rankin, J.: Social determinants of antenatal depression and anxiety among women in South Asia: a systematic review & meta-analysis. PLOS ONE 17, e0263760 (2022). https://doi.org/10.1371/journal.pone.0263760

    Article  Google Scholar 

  14. Kroenke, K., Spitzer, R.L., Williams, J.B.W.: The patient health questionnaire-2: validity of a two-item depression screener. Med. Care 41(11), 1284–1292 (2003). https://doi.org/10.1097/01.MLR.0000093487.78664.3C

    Article  Google Scholar 

  15. Maigun Edhborg, H.E.N.: Incidence and risk factor of postpartum depressive symptoms in women: a population based prospective cohort study in a rural district in Bangladesh. J. Depress. Anxiety 04(02), 2167–1044 (2015). https://doi.org/10.4172/2167-1044.1000180, http://www.omicsgroup.org/journals/incidence-and-risk-factor-of-postpartum-depressive-symptoms-in-women-a-population-based-prospective-cohort-study-in-a-rural-district-in-bangladesh-2167-1044-1000180.php?aid=51561

  16. Natarajan, S., Prabhakar, A., Ramanan, N., Bagilone, A., Siek, K., Connelly, K.: Boosting for postpartum depression prediction. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 232–240. IEEE, Philadelphia, PA, USA, Jul 2017. https://doi.org/10.1109/CHASE.2017.82, http://ieeexplore.ieee.org/document/8010637/

  17. Righetti-Veltema, M., Conne-Perréard, E., Bousquet, A., Manzano, J.: Risk factors and predictive signs of postpartum depression. J. Affect. Disord. 49(3), 167–180 (1998). https://doi.org/10.1016/s0165-0327(97)00110-9

    Article  Google Scholar 

  18. Rn, D.R.M., Rn, M.: Depression Among Postnatal Mothers in Bangladesh p. 8

    Google Scholar 

  19. Robertson, E., Grace, S., Wallington, T., Stewart, D.E.: Antenatal risk factors for postpartum depression: a synthesis of recent literature. Gener. Hosp. Psychiatry 26(4), 289–295 (2004). https://doi.org/10.1016/j.genhosppsych.2004.02.006

    Article  Google Scholar 

  20. Shatte, A.B.R., Hutchinson, D.M., Teague, S.J.: Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 49(9), 1426–1448 (2019). https://doi.org/10.1017/S0033291719000151

    Article  Google Scholar 

  21. Shin, D., Lee, K.J., Adeluwa, T., Hur, J.: Machine learning-based predictive modeling of postpartum depression. J. Clin. Med. 9(9), 2899 (2020). https://doi.org/10.3390/jcm9092899, https://www.mdpi.com/2077-0383/9/9/2899

  22. Stewart, D.E., Robertson, E., Phil, M., Dennis, C.L., Grace, S.L., Wallington, T.: Postpartum depression: literature review of risk factors and interventions, p. 289 (2003)

    Google Scholar 

  23. Tortajada, S., et al.: Prediction of postpartum depression using multilayer perceptrons and pruning. Methods Inform. Med. 48(03), 291–298 (2009). https://doi.org/10.3414/ME0562, http://www.thieme-connect.de/DOI/DOI?10.3414/ME0562

  24. Wang, S., Pathak, J., Zhang, Y.: Using electronic health records and machine learning to predict postpartum depression. Stud. Health Technol. Inform. 264, 888–892 (2019). https://doi.org/10.3233/SHTI190351

    Article  Google Scholar 

  25. Wisner, K.L., Moses-Kolko, E.L., Sit, D.K.Y.: Postpartum depression: a disorder in search of a definition. Arch. Women’s Mental Health. 13(1), 37–40 (2010). https://doi.org/10.1007/s00737-009-0119-9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426488/

  26. Zhang, W., Liu, H., Silenzio, V.M.B., Qiu, P., Gong, W.: Machine learning models for the prediction of postpartum depression: application and comparison based on a cohort study. JMIR Med. Inform. 8(4), e15516 (2020). https://doi.org/10.2196/15516, http://medinform.jmir.org/2020/4/e15516/

  27. Zhang, Y., Wang, S., Hermann, A., Joly, R., Pathak, J.: Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women. J. Affect. Disord. 279, 1–8 (2021). https://doi.org/10.1016/j.jad.2020.09.113, https://linkinghub.elsevier.com/retrieve/pii/S0165032720328093

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasiya Fairiz Raisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raisa, J.F., Kaiser, M.S., Mahmud, M. (2022). A Machine Learning Approach for Early Detection of Postpartum Depression in Bangladesh. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds) Brain Informatics. BI 2022. Lecture Notes in Computer Science(), vol 13406. Springer, Cham. https://doi.org/10.1007/978-3-031-15037-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15037-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15036-4

  • Online ISBN: 978-3-031-15037-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics