Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-monotonic Reasoning via Dynamic Consequence

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13468))

  • 505 Accesses

Abstract

We approach the concept of Pivotal Rule Consequence (\(\textsf{PRC}\)) proposed in [14, 15] from a semantical perspective, resorting to model updates in Public Announcement Logic (\(\textsf{PAL}\)) [17]. In doing this, we take inspiration from the notion of dynamic consequence from [3, 6]. Our perspective gains in interest since \(\textsf{PRC}\) serves as a “bridge” from Classical Logic to Default Logic –one of the most well-known non-monotonic formalisms. We show how the internalization of \(\textsf{PRC}\) in \(\textsf{PAL}\) leads to clear semantics of the former, and to completeness and transfer results. Moreover, we address the case of credulous consequence in Default Logic as a particular case of \(\textsf{PRC}\). Interestingly, we cast credulous consequence as a model checking problem. We argue that our results open the way to use well-known semantic tools from modal logic to study properties of different non-monotonic logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathfrak {M}|_{\varphi }\) might be empty. If so, \(\mathfrak {M}, w \Vdash \varphi \) doesn’t hold and \(\mathfrak {M},w \models [\varphi ]\psi \) is trivially true.

  2. 2.

    Definition 14 allows us to refer indistinctly to a pivotal rule, and to the corresponding formula capturing it. Context will always disambiguate.

References

  1. Antoniou, G., Wang, K.: Default logic. In: Gabbay, D., Woods, J. (eds.) The Many Valued and Nonmonotonic Turn in Logic, Handbook of the History of Logic, vol. 8, pp. 517–555. North-Holland (2007)

    Google Scholar 

  2. van Benthem, J.: Modal correspondence theory. Handb. Philos. Log. 2, 167–247 (1984)

    Article  Google Scholar 

  3. van Benthem, J.: Logical dynamics meets logical pluralism? Australas. J. Log. 6, 182–209 (2008)

    Google Scholar 

  4. Besnard, P., Schaub, T.: Possible worlds semantics for default logics. Fund. Inform. 21(1/2), 39–66 (1994)

    Google Scholar 

  5. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier (2007)

    Google Scholar 

  6. Cordón-Franco, A., van Ditmarsch, H., Nepomuceno-Fernández, Á.: Dynamic consequence and public announcement. Rev. Symbolic Log. 6(4), 659–679 (2013)

    Article  Google Scholar 

  7. Denecker, M., Marek, V., Truszczynski, M.: Uniform semantic treatment of default and autoepistemic logics. Artif. Intell. 143(1), 79–122 (2003)

    Article  Google Scholar 

  8. Ditmarsch, H.V., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5839-4

    Book  Google Scholar 

  9. Etherington, D.: A semantics for default logic. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence (IJCAI 1987), pp. 495–498. Morgan Kaufmann (1987)

    Google Scholar 

  10. Goldblatt, R.: Saturation and the hennessy-milner property. In: Ponse, A., de Rijke, M., Venema, Y. (eds.) Modal Logic and Process Algebra: A Bisimulation Perspective, pp. 107–129. Cambridge University Press (1995)

    Google Scholar 

  11. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log. Comput. 2(1), 5–30 (1992)

    Article  Google Scholar 

  12. Gottlob, G.: Complexity results for nonmonotonic logics. J. Log. Comput. 2(3), 397–425 (1992)

    Article  Google Scholar 

  13. Lutz, C.: Complexity and succinctness of public announcement logic. In: Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 137–143. ACM (2006)

    Google Scholar 

  14. Makinson, D.: Bridges between classical and nonmonotonic logic. Log. J. IGPL 11(1), 69–96 (2003)

    Article  Google Scholar 

  15. Makinson, D.: Bridges from Classical to Nonmonotonic Logic, Texts in Computing, vol. 5. College Publications (2005)

    Google Scholar 

  16. Mendelson, E.: Introduction to Mathematical Logic, 5th edn. Chapman & Hall/CRC (2009)

    Google Scholar 

  17. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007). https://doi.org/10.1007/s11229-007-9168-7

    Article  Google Scholar 

  18. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)

    Article  Google Scholar 

  19. Roy, O., Hjortland, O.T.: Dynamic consequence for soft information. J. Log. Comput. 26(6), 1843–1864 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

Our work is supported by ANPCyT-PICT-2020-3780, CONICET project PIP 11220200100812CO, and by the LIA SINFIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Cassano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Areces, C., Cassano, V., Fervari, R. (2022). Non-monotonic Reasoning via Dynamic Consequence. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics