Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Operational Causality – Necessarily Sufficient and Sufficiently Necessary

  • Chapter
  • First Online:
A Journey from Process Algebra via Timed Automata to Model Learning

Abstract

Necessity and sufficiency are well-established notions in logic and causality analysis, but have barely received attention in the formal methods community. In this paper, we present temporal logic characterizations of necessary and sufficient causes in terms of state sets in operational system models. We introduce degrees of necessity and sufficiency as quality measures for sufficient and necessary causes, respectively, along with a versatile weight-based approach to find “good causes”. The resulting optimization problems of finding optimal causes are shown to be solvable in polynomial time.

The authors are supported by the DFG through the Collaborative Research Center TRR 248 (CPEC, project ID 389792660, https://perspicuous-computing.science), the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy) and the Research Training Groups QuantLA (GRK 1763) and RoSI (GRK 1907).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The problem of finding balanced vertex separators, as studied by Feige et al. [27, 28], is NP-complete and differs from the one we study in that it requires that the vertex separator partitions the graph into approximately equally sized components.

References

  1. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_2

    Chapter  Google Scholar 

  2. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_42

    Chapter  Google Scholar 

  3. Baier, C., et al.: From verification to causality-based explications. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 198, pp. 1:1–1:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  4. Baier, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R.: Probabilistic causes in Markov chains. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 205–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5_14

    Chapter  Google Scholar 

  5. Baier, C., Funke, F., Piribauer, J., Ziemek, R.: On probability-raising causality in Markov decision processes. In: Bouyer, P., Schröder, L. (eds.) FoSSaCS 2022. LNCS, vol. 13242, pp. 40–60. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99253-8_3

    Chapter  Google Scholar 

  6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  7. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_43

    Chapter  Google Scholar 

  8. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterexample traces. SIGPLAN Not. 38(1), 97–105 (2003)

    Article  Google Scholar 

  9. Batusov, V., Soutchanski, M.: Situation calculus semantics for actual causality. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, April 2018

    Google Scholar 

  10. Beer, A., Heidinger, S., Kühne, U., Leitner-Fischer, F., Leue, S.: Symbolic causality checking using bounded model checking. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 203–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23404-5_14

    Chapter  Google Scholar 

  11. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)

    Article  Google Scholar 

  12. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL formulas. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_28

    Chapter  Google Scholar 

  13. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general LTL-definable properties. In: Proceedings of the 3rd Workshop on Formal Reasoning About Causation, Responsibility, and Explanations in Science and Technology (CREST), pp. 1–15 (2018)

    Google Scholar 

  14. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model approach. J. Artif. Int. Res. 22(1), 93–115 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification? ACM Trans. Comput. Logic 9(3), 1–26 (2008)

    Article  MathSciNet  Google Scholar 

  16. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach to coverage in model checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 66–78. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_7

    Chapter  Google Scholar 

  17. Chockler, H., Kupferman, O., Vardi, M.: Coverage metrics for formal verification. Int. J. Softw. Tools Technol. Transf. (STTT) 8(4–5), 373–386 (2006)

    Article  Google Scholar 

  18. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for temporal logic model checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 528–542. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_36

    Chapter  MATH  Google Scholar 

  19. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 196–215. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_12

    Chapter  Google Scholar 

  20. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)

    Article  Google Scholar 

  21. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of counterexamples and witnesses in symbolic model checking. In: Proceedings of the 32nd Annual ACM/IEEE Design Automation Conference (DAC), New York, NY, USA, pp. 427–432. ACM (1995)

    Google Scholar 

  22. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MathSciNet  Google Scholar 

  23. Datta, A., Garg, D., Kaynar, D., Sharma, D., Sinha, A.: Program actions as actual causes: a building block for accountability. In: Proceedings of the 28th IEEE Computer Security Foundations Symposium (CSF), pp. 261–275 (2015)

    Google Scholar 

  24. Alfaro, L.: Temporal logics for the specification of performance and reliability. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023457

    Chapter  Google Scholar 

  25. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_27

    Chapter  Google Scholar 

  26. Dubslaff, C., Weis, K., Baier, C., Apel, S.: Causality in configurable software systems. In: Proceedings of the 44th International Conference on Software Engineering (ICSE) (2022)

    Google Scholar 

  27. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008)

    Article  MathSciNet  Google Scholar 

  28. Feige, U., Mahdian, M.: Finding small balanced separators. In: Kleinberg, J.M. (ed.) Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006, pp. 375–384. ACM (2006)

    Google Scholar 

  29. Galles, D., Pearl, J.: Axioms of causal relevance. Artif. Intell. 97(1–2), 9–43 (1997)

    Article  MathSciNet  Google Scholar 

  30. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3, 151–182 (1998)

    Article  MathSciNet  Google Scholar 

  31. Gomes, G.: Are necessary and sufficient conditions converse relations? Australas. J. Philos. 87(3), 375–387 (2009)

    Article  Google Scholar 

  32. Gössler, G., Le Métayer, D.: A general trace-based framework of logical causality. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7_11

    Chapter  Google Scholar 

  33. Gössler, G., Le Métayer, D.: A general framework for blaming in component-based systems. Sci. Comput. Program. 113, 223–235 (2015)

    Article  Google Scholar 

  34. Gössler, G., Stefani, J.-B.: Causality analysis and fault ascription in component-based systems. Theoret. Comput. Sci. 837, 158–180 (2020)

    Article  MathSciNet  Google Scholar 

  35. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_8

    Chapter  Google Scholar 

  36. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance metrics. Int. J. Softw. Tools Technol. Transfer 8(3), 229–247 (2006)

    Article  Google Scholar 

  37. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2_8

    Chapter  Google Scholar 

  38. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12(1), 317–337 (2000)

    Article  MathSciNet  Google Scholar 

  39. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Proceedings of the 24th International Joint Conference on AI (IJCAI), pp. 3022–3033. AAAI Press (2015)

    Google Scholar 

  40. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

    Article  Google Scholar 

  41. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005)

    Article  Google Scholar 

  42. Hart, H.L.A., Honoré, A.M.: Causation in the Law. Oxford University Press, Oxford (1959)

    Google Scholar 

  43. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program. ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

    Article  Google Scholar 

  44. Hopkins, M., Pearl, J.: Causality and counterfactuals in the situation calculus. J. Log. Comput. 17(5), 939–953 (2007)

    Article  MathSciNet  Google Scholar 

  45. Hoskote, Y., Kam, T., Ho, P.-H., Zhao, X.: Coverage estimation for symbolic model checking. In: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference (DAC), pp. 300–305 (1999)

    Google Scholar 

  46. Hume, D.: A Treatise of Human Nature. John Noon (1739)

    Google Scholar 

  47. Hume, D.: An Enquiry Concerning Human Understanding. London (1748)

    Google Scholar 

  48. Khan, S.M., Soutchanski, M.: Necessary and sufficient conditions for actual root causes. In: 24th European Conference on Artificial Intelligence (ECAI 2020), Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), pp. 800–808 (2020)

    Google Scholar 

  49. Kleinberg, S.: A logic for causal inference in time series with discrete and continuous variables. In: Proceedings of the 22nd International Joint Conference on AI (IJCAI), pp. 943–950 (2011)

    Google Scholar 

  50. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proceedings of the 25th Conference on Uncertainty in AI (UAI), pp. 303–312 (2009)

    Google Scholar 

  51. Kleinberg, S., Mishra, B.: The temporal logic of token causes. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (KR) (2010)

    Google Scholar 

  52. Kölbl, M., Leue, S.: An efficient algorithm for computing causal trace sets in causality checking. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 171–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_10

    Chapter  MATH  Google Scholar 

  53. Kölbl, M., Leue, S., Schmid, R.: Dynamic causes for the violation of timed reachability properties. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_8

    Chapter  MATH  Google Scholar 

  54. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 82–98. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2_8

    Chapter  Google Scholar 

  55. Kupriyanov, A., Finkbeiner, B.: Causality-based verification of multi-threaded programs. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 257–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_19

    Chapter  Google Scholar 

  56. Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 814–830. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_54

    Chapter  Google Scholar 

  57. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_16

    Chapter  MATH  Google Scholar 

  58. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1973)

    Article  Google Scholar 

  59. Mackie, J.L.: Causes and conditions. Am. Philos. Q. 2(4), 245–264 (1965)

    Google Scholar 

  60. Mackie, J.L.: The Cement of the Universe: A Study of Causation. Clarendon Press, Oxford (1974)

    Google Scholar 

  61. Mascle, C., Baier, C., Funke, F., Jantsch, S., Kiefer, S.: Responsibility and verification: importance value in temporal logics. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14 (2021)

    Google Scholar 

  62. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Hoboken (1982)

    MATH  Google Scholar 

  63. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995)

    Article  MathSciNet  Google Scholar 

  64. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)

    Google Scholar 

  65. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_39

    Chapter  Google Scholar 

  66. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/3-540-11494-7_22

    Chapter  Google Scholar 

  67. Reichenbach, H.: The Direction of Time. University of California Press, Berkeley and Los Angeles (1956)

    Book  Google Scholar 

  68. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)

    Book  Google Scholar 

  69. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE), pp. 30–39 (2003)

    Google Scholar 

  70. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science, SFCS 1985, pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

  71. Wertheimer, R.: Conditions. J. Philos. 65(12), 355–364 (1968)

    Article  Google Scholar 

  72. Wright, R.W.: Causation in tort law. Calif. Law Rev. 73(6), 1735–1828 (1985)

    Article  Google Scholar 

  73. Zeller, A.: Isolating cause-effect chains from computer programs. In: Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE), New York, NY, USA, pp. 1–10. ACM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christel Baier , Clemens Dubslaff , Florian Funke , Simon Jantsch , Jakob Piribauer or Robin Ziemek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Piribauer, J., Ziemek, R. (2022). Operational Causality – Necessarily Sufficient and Sufficiently Necessary. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds) A Journey from Process Algebra via Timed Automata to Model Learning . Lecture Notes in Computer Science, vol 13560. Springer, Cham. https://doi.org/10.1007/978-3-031-15629-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15629-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15628-1

  • Online ISBN: 978-3-031-15629-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics