Abstract
Interactive Machine Learning (IML) systems incorporate humans into the learning process to enable iterative and continuous model improvements. The interactive process can be designed to leverage the expertise of domain experts with no background in machine learning, for instance, through repeated user feedback requests. However, excessive requests can be perceived as annoying and cumbersome and could reduce user trust. Hence, it is mandatory to establish an efficient dialog between a user and a machine learning system. We aim to detect when a domain expert disagrees with the output of a machine learning system by observing its eye movements and facial expressions. In this paper, we describe our approach for modelling user disagreement and discuss how such a model could be used for triggering user feedback requests in the context of interactive machine learning.
Supported by organization x.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014). https://doi.org/10.1609/aimag.v35i4.2513
Barz, M., Bhatti, O.S., Lüers, B., Prange, A., Sonntag, D.: Multisensor-pipeline: a lightweight, flexible, and extensible framework for building multimodal-multisensor interfaces. In: Companion Publication of the 2021 International Conference on Multimodal Interaction, ICMI 2021 Companion, pp. 13–18. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3461615.3485432. ISBN 9781450384711
Barz, M., Bhatti, O.S., Sonntag, D.: Implicit estimation of paragraph relevance from eye movements. Front. Comput. Sci. 3, 808507 (2021). https://doi.org/10.3389/fcomp.2021.808507
Barz, M., Stauden, S., Sonntag, D.: Visual search target inference in natural interaction settings with machine learning. In: Bulling, A., Huckauf, A., Jain, E., Radach, R., Weiskopf, D. (eds.) ETRA 2020: 2020 Symposium on Eye Tracking Research and Applications, Stuttgart, Germany, 2–5 June 2020, pp. 1:1–1:8. ACM (2020). https://doi.org/10.1145/3379155.3391314
Bosch, N., Chen, Y., D’Mello, S.: It’s written on your face: detecting affective states from facial expressions while learning computer programming. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) Intelligent Tutoring Systems, pp. 39–44. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_5. ISBN 978-3-319-07221-0
Cakmak, M., Chao, C., Thomaz, A.L.: Designing interactions for robot active learners. IEEE Trans. Auton. Ment. Dev. 2(2), 108–118 (2010). https://doi.org/10.1109/TAMD.2010.2051030
D’Mello, S.K., Craig, S.D., Graesser, A.C.: Multimethod assessment of affective experience and expression during deep learning. Int. J. Learn. Technol. 4(3/4), 165–187 (2009). https://doi.org/10.1504/IJLT.2009.028805. ISSN 1477–8386
Dudley, J.J., Kristensson, P.O.: A review of user interface design for interactive machine learning. ACM Trans. Interact. Intell. Syst. 8(2) (2018). https://doi.org/10.1145/3185517. ISSN 2160–6455
D’Mello, S.K., Graesser, A.C.: Confusion. In: International Handbook of Emotions in Education, pp. 299–320. Routledge (2014)
Ekman, P., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712 (1987)
Ghajargar, M., Persson, J., Bardzell, J., Holmberg, L., Tegen, A.: The UX of interactive machine learning. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3419249.3421236. ISBN 9781450375795
Honeycutt, D., Nourani, M., Ragan, E.: Soliciting human-in-the-loop user feedback for interactive machine learning reduces user trust and impressions of model accuracy. In: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, vol. 8, no. 1, pp. 63–72, October 2020. https://ojs.aaai.org/index.php/HCOMP/article/view/7464
Khaireddin, Y., Chen, Z.: Facial emotion recognition: state of the art performance on FER2013. arXiv preprint arXiv:2105.03588 (2021)
Krause, L., Vossen, P.: When to explain: identifying explanation triggers in human-agent interaction. In: 2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence, pp. 55–60 (2020)
Lallé, S., Conati, C., Carenini, G.: Predicting confusion in information visualization from eye tracking and interaction data. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 2529–2535. AAAI Press (2016). ISBN 9781577357704
Lim, J.Z., Mountstephens, J., Teo, J.: Emotion recognition using eye-tracking: taxonomy, review and current challenges. Sensors 20(8) (2020). https://doi.org/10.3390/s20082384. ISSN 1424–8220. https://www.mdpi.com/1424-8220/20/8/2384
Nadkarni, S., Gupta, R.: A task-based model of perceived website complexity. MIS Q. 31(3), 501–524 (2007). ISSN 02767783. https://www.jstor.org/stable/25148805
Pachman, M., Arguel, A., Lockyer, L., Kennedy, G., Lodge, J.: Eye tracking and early detection of confusion in digital learning environments: proof of concept. Australas. J. Educ. Technol. 32(6) (2016). https://doi.org/10.14742/ajet.3060. https://ajet.org.au/index.php/AJET/article/view/3060
Pentel, A.: Patterns of confusion: using mouse logs to predict user’s emotional state. In: Cristea, A.I., Masthoff, J., Said, A., Tintarev, N. (eds.) Posters, Demos, Late-Breaking Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP 2015), Dublin, Ireland, 29 June–3 July 2015, CEUR Workshop Proceedings, vol. 1388. CEUR-WS.org (2015). https://ceur-ws.org/Vol-1388/PALE2015-paper5.pdf
Pollak, M., Salfinger, A., Hummel, K.A.: Teaching drones on the fly: can emotional feedback serve as learning signal for training artificial agents? arXiv preprint arXiv:2202.09634 (2022)
Salminen, J., Jansen, B.J., An, J., Jung, S.G., Nielsen, L., Kwak, H.: Fixation and confusion: investigating eye-tracking participants’ exposure to information in personas. In: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, CHIIR 2018, pp. 110–119. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3176349.3176391. ISBN 9781450349253
Salminen, J., Nagpal, M., Kwak, H., An, J., Jung, S.g., Jansen, B.J.: Confusion prediction from eye-tracking data: experiments with machine learning. In: Proceedings of the 9th International Conference on Information Systems and Technologies, ICIST 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3361570.3361577. ISBN 9781450362924
Sims, S.D., Conati, C.: A neural architecture for detecting user confusion in eye-tracking data. In: Proceedings of the 2020 International Conference on Multimodal Interaction, ICMI 2020, pp. 15–23. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3382507.3418828. ISBN 9781450375818
Zacharias, J., Barz, M., Sonntag, D.: A survey on deep learning toolkits and libraries for intelligent user interfaces (2018)
Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009). https://doi.org/10.1109/TPAMI.2008.52
Acknowledgements
This work was funded by the German Federal Ministry of Education and Research (BMBF) under grant number 01JD1811C (GeAR).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bhatti, O., Barz, M., Sonntag, D. (2022). Leveraging Implicit Gaze-Based User Feedback for Interactive Machine Learning. In: Bergmann, R., Malburg, L., Rodermund, S.C., Timm, I.J. (eds) KI 2022: Advances in Artificial Intelligence. KI 2022. Lecture Notes in Computer Science(), vol 13404. Springer, Cham. https://doi.org/10.1007/978-3-031-15791-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-15791-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15790-5
Online ISBN: 978-3-031-15791-2
eBook Packages: Computer ScienceComputer Science (R0)