Abstract
Software Product Lines (SPLs) enable and maximize reuse of software artefacts, using software variability as central technique. In Model-Based Safety Analysis, system and software models are annotated with failure models that are used to produce safety analysis artefacts like fault trees and FMEAs. However, little work has been done to show MBSA in product lines, exploiting failure models to create safety analyses for variants in the product line. State machines have been widely used to support both fault propagation and probabilistic system safety analysis. In this paper, we introduce an approach to support variability modeling and reuse of state-machine diagrams used for system safety analysis. The approach enhances traditional software product line cycle with new activities aimed to support the reuse of safety information using state-machine diagrams and facilitates the management of the diversity of functional safety across system configurations using variability models. We evaluate our approach using an automotive braking system where we show reduction of the burden of safety analysis and improvements in traceability between safety artifacts and variability abstractions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wolschke, C., Becker, M., Schneickert, S., Adler, R., MacGregor, J.: Industrial perspective on reuse of safety artifacts in software product lines. In: Proceedings of the 23rd International Systems and Software Product Line Conference (SPLC 2019), Paris, France. ACM, NY, USA, pp. 143–152 (2019)
Pohl, P., Höchsmann, M., Wohlgemuth, P., Tischer, C.: Variant management solution for large scale software product lines. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Gothenburg, Sweden. ACM, New York, NY, USA, pp. 85–94 (2018)
Tischer, C., Muller, A., Mandl, T., Krause, R.: Experiences from a large scale software product line merger in the automotive domain. In: Proceedings of the 15th International Software Product Line Conference, Munich, Germany, pp. 267–276 (2011)
SPLC.net. SPLC hall of the fame: General Motors Powertrain (GMPW) (2019). https://splc.net/fame/general-motors-powertrain. Accessed 10 July 2022
Schulze, M., Mauersberger, J., Beuche, D.: Functional safety and variability: can it be brought together? In: Proceedings of the 17th International Software Product Line Conference, Tokyo, Japan. ACM, NY, USA, pp. 236–243 (2013)
de Oliveira, A.L., Braga, R.T.V., Masiero, P.C., Papadopoulos, Y., Habli, I., Kelly, T.: Variability management in safety-critical software product line engineering. In: Capilla, R., Gallina, B., Cetina, C. (eds.) ICSR 2018. LNCS, vol. 10826, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90421-4_1
Domis, D., Adler, R., Becker, M.: Integrating variability and safetyanalysis models using commercial UML-based tools. In: Proceedings of the 19th International Software Product Conference, Nashville, USA. ACM, NY, USA, 20–24 July, pp. 225–234 (2015)
Oliveira, A.L., et al.: Variability management in safety-critical systems design and dependability analysis. J. Softw.: Evol. Process 31(8), pp. 1–28 (2019)
Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2001)
Dehlinger, J., Lutz, R.: Software fault tree analysis for product lines. In: Proceedings of the 8th IEEE International Symposium. on High Assurance Systems Engineering, Tampa, USA, pp. 12–21 (2004)
Feng, Q., Lutz, R.: Bi-directional safety analysis of product lines. J. Syst. Softw. 78(2), 111–117 (2005)
GĂ³mez, C., Liggesmeyer, P., Sutor, A.: Variability management of safety and reliability models: an intermediate model towards systematic reuse of component fault trees. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 28–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15651-9_3
Liu, J., Dehlinger, J., Lutz, R.: Safety analysis of software product lines using stated modeling. J. Syst. Softw. 80(11), pp. 1879–1892 (2007)
KĂ¤ĂŸmeyer, M., Schulze, M., Schurius, M.: A process to support asystematic change impact analysis of variability and safety in automotive functions. In: Proceedings of the 19th International Software Product Line Conference, Nashville, USA. ACM, NY, USA, pp. 235–244 (2015)
KĂ¤ĂŸmeyer, M., Moncada, D.S.V., Schurius, M.: Evaluation of asystematic approach in variant management for safety-critical systemsdevelopment. In: Proceedings of 13th International Conference on Embedded and Ubiquitous Computing, IEEE, Porto, Portugal, pp. 35–43 (2015)
Montecchi, L., Lollini, P., Bondavalli, A.: A template-based methodology for the specification and automated composition of performability models. In IEEE Transactions on Reliability 69(1), 293–309 (2020)
Bressan, L., de Oliveira, A.L., Campos, F., Papadopoulos, Y., Parker, D.: An integrated approach to support the process-based certification of variant-intensive systems. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020. LNCS, vol. 12297, pp. 179–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58920-2_12
SAE. Architecture Analysis & Design Language (AADL) AS5506C, SAE (2017). https://www.sae.org/standards/content/as5506c/
Shin’ichi Shiraishi,: An AADL-based approach to variability modeling of automotive control systems. In: Petriu, D.C., Rouquette, N., Haugen, Ă˜. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 346–360. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2_24
Intecs, CHESS Modelling Language: A UML/MARTE/SysML profile. (2020) https://www.eclipse.org/chess/publis/CHESSMLprofile.pdf
Mazzini, S., Favaro, J., Puri, S., Baracchi, L.: CHESS: an open source methodology and toolset for the development of critical systems. In: Join Proceedings of EduSymp, pp. 59–66 (2016)
Gallina, B., Javed, A. M., Muram, F. U., Punnekkat, S.: Model-driven dependability analysis method for component-based architectures. In: Proceedings of the Euromicro-SEAA Conference, Cesme, Izmir, Turkey, pp. 233–240 (2012)
Delange, J., Feiler, P., Gluch, D., Hudak, J.: AADL fault modeling and analysis within an ARP4761 safety assessment. Technical report, Carnegie Mellon Software Engineering Instiute (2013)
Papadopoulos, Y., et al.: Engineering failure analysis and design optimization with HiP-HOPS. J. Eng. Fail. Anal. 18(2), 590–608 (2011)
Capilla, R., Bosch, J., Kang, K.-C. (eds.): Systems and Software Variability Management. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36583-6
Vasilevskiy, A. Haugen, Ă˜., Chauvel, F., Johansen, M. F., Shimbara, D.: The BVR tool bundle to support product line engineering. In: Proceedings of the 19th International Software Product Line Conference, Nashville, USA, ACM, NY, pp. 380–384 (2015)
Haugen, Ă˜., Moller-Pedersen, B., Oldevik, J., Olsen, G. K., Svendsen, A.: Adding standardized variability to domain specific languages. In: Proceedings of the 12th International Software Product Line Conference, IEEE, pp. 139–148 (2008)
ISO: ISO 26262: Road Vehicles Functional Safety (2018)
Thomas, E.: Certification Cost Estimates for Future Communication Radio Platforms. Rockwell Collins Inc., Technical Report (2009)
Montecchi, L., Gallina, B.: SafeConcert: a metamodel for a concerted safetymodeling of socio-technical systems In: 5th International Symposium onModel-Based Safety and Assessment, vol. 10437 of LNCS, Trento, Italy, pp. 129–144 (2017)
Bittner, B., et al.: The xSAP Safety Analysis Platform. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 533–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_31
Lee, K., Kang, K.C.: Usage Context as Key Driver for Feature Selection. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 32–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15579-6_3
De Castro, R., AraĂºjo, R.E., Freitas, D.: Hybrid ABS with electric motor and friction brakes. In: Proceedings of the 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks, Manchester, UK (2011)
HBS, Case Study. https://github.com/aloliveira/hbs
Azevedo, L., Parker, D., Walker, M., Papadopoulos, Y., AraĂºjo, R.: Assisted assignment of automotive safety requirements. IEEE Softw. 31(1), 62–68 (2014)
Blom, H., et al.: EAST-ADL: An architecture description language for automotive software-intensive systems in the light of recent use and research. Int. J. Syst. Dyn. Appl. (IJSDA) 5(3), 1–20 (2016)
AltaRica Project. Methods and Tools for AltaRica Language. https://altarica.labri.fr/wp/?page_id=23 (2020)
Arnold, A., Gerald, P., Griffault, A., Rauzy, A.: The Altarica formalism for describing concurrent systems. Fund. Inform. 34, 109–124 (2000)
Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform. Int. J. Softw. Tools Technol. Transfers (STTT) – Special Section on Advances in Automated Verification of Critical Systems, 9(1), 5–24 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bressan, L. et al. (2022). Modeling the Variability of System Safety Analysis Using State-Machine Diagrams. In: Seguin, C., Zeller, M., Prosvirnova, T. (eds) Model-Based Safety and Assessment. IMBSA 2022. Lecture Notes in Computer Science, vol 13525. Springer, Cham. https://doi.org/10.1007/978-3-031-15842-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-15842-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15841-4
Online ISBN: 978-3-031-15842-1
eBook Packages: Computer ScienceComputer Science (R0)