Abstract
We study the complexity of testing whether a biconnected graph \(G=(V,E)\) is planar with the additional constraint that some cyclic orders of the edges incident to its vertices are allowed while some others are forbidden. The allowed cyclic orders are conveniently described by associating every vertex v of G with a set D(v) of FPQ-trees. Let \(tw \) be the treewidth of G and let \(D_{\max } = \max _{v\in V}{|D(v)|}\), i.e., the maximum number of FPQ-trees per vertex. We show that the problem is FPT when parameterized by \(tw \) + \(D_{\max }\); for a contrast, we prove that the problem is paraNP-hard when parameterized by \(D_{\max }\) only and it is W[1]-hard when parameterized by \(tw \) only. We also apply our techniques to the problem of testing whether a clustered graph is NodeTrix planar with fixed sides. We extend a result by Di Giacomo et al. [Algorithmica, 2019] and prove that NodeTrix planarity with fixed sides is FPT when parameterized by the size of the clusters plus the treewidth of the graph obtained by collapsing these clusters to single vertices, provided that this graph is biconnected.
This work was partially supported by: (i) MIUR, grant 20174LF3T8; (ii) Dipartimento di Ingegneria - Università degli Studi di Perugia, grants RICBA20EDG and RICBA21LG; (iii) German Science Foundation (DFG), grant Ru 1903/3-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017). https://doi.org/10.7155/jgaa.00437
Angelini, P., et al.: Graph planarity by replacing cliques with paths. Algorithms 13(8), 194 (2020). https://doi.org/10.3390/a13080194
Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: Hybrid graph visualizations with ChordLink: algorithms, experiments, and applications. IEEE Trans. Vis. Comput. Graph. 28(2), 1288–1300 (2022). https://doi.org/10.1109/TVCG.2020.3016055
Arumugam, S., Brandstädt, A., Nishizeki, T., Thulasiraman, K.: Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Chapman and Hall/CRC (2016)
Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011). https://doi.org/10.1109/TVCG.2010.265
Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms for book embedding problems. J. Graph Algorithms Appl. 24(4), 603–620 (2020). https://doi.org/10.7155/jgaa.00526
Binucci, C., Di Giacomo, E., Liotta, G., Tappini, A.: Quasi-upward planar drawings with minimum curve complexity. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 195–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2_14
Bläsius, T., Fink, S.D., Rutter, I.: Synchronized planarity with applications to constrained planarity problems. In: 29th Annual European Symposium on Algorithms, ESA 2021, Lisbon, Portugal, 6–8 September 2021 (Virtual Conference), pp. 19:1–19:14 (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.19
Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput. Sci. 609, 306–315 (2016). https://doi.org/10.1016/j.tcs.2015.10.011
Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16:1–16:46 (2016). https://doi.org/10.1145/2738054
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). https://doi.org/10.1016/S0022-0000(76)80045-1
Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov, K.: Parameterized algorithms for upward planarity. In: 38th International Symposium on Computational Geometry, SoCG 2022, Berlin, Germany, 7–10 June 2022, pp. 26:1–26:16 (2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.26
Cortese, P.F., Di Battista, G.: Clustered planarity. In: Proceedings of the 21st ACM Symposium on Computational Geometry, Pisa, Italy, 6–8 June 2005, pp. 32–34 (2005). https://doi.org/10.1145/1064092.1064093
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018). https://doi.org/10.7155/jgaa.00461
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). https://doi.org/10.1137/S0097539794280736
Di Giacomo, E., Didimo, W., Montecchiani, F., Tappini, A.: A user study on hybrid graph visualizations. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 21–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2_2
Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (k, p)-planarity: a relaxation of hybrid planarity. Theor. Comput. Sci. 896, 19–30 (2021). https://doi.org/10.1016/j.tcs.2021.09.044
Di Giacomo, E., Liotta, G., Montecchiani, F.: Orthogonal planarity testing of bounded treewidth graphs. J. Comput. Syst. Sci. 125, 129–148 (2022). https://doi.org/10.1016/j.jcss.2021.11.004
Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: NodeTrix planarity testing with small clusters. Algorithmica 81(9), 3464–3493 (2019). https://doi.org/10.1007/s00453-019-00585-6
Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discret. Math. 23(4), 1842–1899 (2009). https://doi.org/10.1137/070696854
Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January 2020, pp. 806–825 (2020). https://doi.org/10.1137/1.9781611975994.49
Didimo, W., Liotta, G., Patrignani, M.: HV-planarity: algorithms and complexity. J. Comput. Syst. Sci. 99, 72–90 (2019). https://doi.org/10.1016/j.jcss.2018.08.003
Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010). https://doi.org/10.1007/s00453-009-9296-1
Dujmovic, V., et al.: A fixed-parameter approach to 2-layer planarization. Algorithmica 45(2), 159–182 (2006). https://doi.org/10.1007/s00453-005-1181-y
Dujmovic, V., et al.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008). https://doi.org/10.1007/s00453-007-9151-1
Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60313-1_145
Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995)
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.1137/S0097539794277123
Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008). https://doi.org/10.7155/jgaa.00160
Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-bend orthogonally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_21
Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). https://doi.org/10.1109/TVCG.2007.70582
Hliněný, P., Sankaran, A.: Exact crossing number parameterized by vertex cover. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 307–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_24
Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981). https://doi.org/10.1137/0210055
Liotta, G., Rutter, I., Tappini, A.: Simultaneous FPQ-ordering and hybrid planarity testing. Theor. Comput. Sci. 874, 59–79 (2021). https://doi.org/10.1016/j.tcs.2021.05.012
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on Computing, vol. 12. World Scientific (2004). https://doi.org/10.1142/5648
Patrignani, M.: Planarity testing and embedding. In: Handbook on Graph Drawing and Visualization, pp. 1–42 (2013)
Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991). https://doi.org/10.1016/0095-8956(91)90061-N
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Liotta, G., Rutter, I., Tappini, A. (2022). Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)