Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Video Motion Perception for Self-supervised Representation Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13532))

Included in the following conference series:

Abstract

The motion of a video contains two factors: magnitude and direction, but most of the existing video self-supervised methods ignored the motion direction information. In this paper, we propose a Video Motion Perception (VMP) self-supervised framework, simultaneously taking account of the above two key factors. Specifically, a Motion Direction Perception Module (MDPM) is applied to asking the network to predict the moving direction of the video objects by using two well-designed handcraft strategies. Additionally, we analyze the characteristic of video motion in natural scenes and propose the Motion Change Perception Module (MCPM) accordingly for motion magnitude learning. Experimental results show that VMP achieves competitive performance on different benchmarks, including action recognition, video retrieval, and action similarity labeling.

Supported by the Beijing Municipal Science & Technology Commission (Z191100007119002), the Key Research Program of Frontier Sciences, CAS, Grant NO ZDBS-LY-7024.

W. Li and D. Luo—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benaim, S., et al.: SpeedNet: learning the speediness in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9922–9931 (2020)

    Google Scholar 

  2. Chen, P., et al.: RSPNet: relative speed perception for unsupervised video representation learning. In: AAAI. vol. 1, p. 5 (2021)

    Google Scholar 

  3. Cho, H., Kim, T., Chang, H.J., Hwang, W.: Self-supervised spatio-temporal representation learning using variable playback speed prediction, vol. 2, pp. 13–14. arXiv preprint arXiv:2003.02692 (2020)

  4. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  6. Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representation learning. NeurIPS 33, 5679–5690 (2020)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Jenni, S., Meishvili, G., Favaro, P.: Video representation learning by recognizing temporal transformations. In: Proceedings of the European Conference on Computer Vision, pp. 425–442 (2020)

    Google Scholar 

  9. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  10. Kim, D., Cho, D., Kweon, I.S.: Self-supervised video representation learning with space-time cubic puzzles. In: AAAI, vol. 33, pp. 8545–8552 (2019)

    Google Scholar 

  11. Kliper-Gross, O., Hassner, T., et al.: The action similarity labeling challenge. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 615–621 (2011)

    Article  Google Scholar 

  12. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  13. Luo, D., et al.: Video cloze procedure for self-supervised spatio-temporal learning. In: AAAI, pp. 11701–11708 (2020)

    Google Scholar 

  14. Luo, D., Zhou, Y., Fang, B., Zhou, Y., Wu, D., Wang, W.: Exploring relations in untrimmed videos for self-supervised learning. ACM Trans. Multimed. Comput. Commun. App. (TOMM) 18(1s), 1–21 (2022)

    Google Scholar 

  15. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  16. Pan, T., et al.: VideoMoCo: contrastive video representation learning with temporally adversarial examples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11205–11214 (2021)

    Google Scholar 

  17. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS, pp. 568–576 (2014)

    Google Scholar 

  19. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  20. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  21. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  22. Wang, J., Jiao, J., Liu, Y.-H.: Self-supervised video representation learning by pace prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 504–521. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_30

    Chapter  Google Scholar 

  23. Wang, J., et al.: Self-supervised spatio-temporal representation learning for videos by predicting motion and appearance statistics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4006–4015 (2019)

    Google Scholar 

  24. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  25. Wei, D., Lim, J.J., Zisserman, A., Freeman, W.T.: Learning and using the arrow of time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8052–8060 (2018)

    Google Scholar 

  26. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  27. Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., Zhuang, Y.: Self-supervised spatiotemporal learning via video clip order prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10334–10343 (2019)

    Google Scholar 

  28. Yao, Y., Liu, C., Luo, D., Zhou, Y., Ye, Q.: Video playback rate perception for self-supervised spatio-temporal representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6548–6557 (2020)

    Google Scholar 

  29. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Luo, D., Fang, B., Li, X., Zhou, Y., Wang, W. (2022). Video Motion Perception for Self-supervised Representation Learning. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics