Abstract
Zero-knowledge proof is a powerful cryptographic primitive that has found various applications in the real world. However, existing schemes with succinct proof size suffer from a high overhead on the proof generation time that is super-linear in the size of the statement represented as an arithmetic circuit, limiting their efficiency and scalability in practice. In this paper, we present Orion, a new zero-knowledge argument system that achieves O(N) prover time of field operations and hash functions and \(O(\log ^2 N)\) proof size. Orion is concretely efficient and our implementation shows that the prover time is 3.09 s and the proof size is 1.5 MB for a circuit with \(2^{20}\) multiplication gates. The prover time is the fastest among all existing succinct proof systems, and the proof size is an order of magnitude smaller than a recent scheme proposed in Golovnev et al. 2021.
In particular, we develop two new techniques leading to the efficiency improvement. (1) We propose a new algorithm to test whether a random bipartite graph is a lossless expander graph or not based on the densest subgraph algorithm. It allows us to sample lossless expanders with an overwhelming probability. The technique improves the efficiency and/or security of all existing zero-knowledge argument schemes with a linear prover time. The testing algorithm based on densest subgraph may be of independent interest for other applications of expander graphs. (2) We develop an efficient proof composition scheme, code switching, to reduce the proof size from square root to polylogarithmic in the size of the computation. The scheme is built on the encoding circuit of a linear code and shows that the witness of a second zero-knowledge argument is the same as the message in the linear code. The proof composition only introduces a small overhead on the prover time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Lightweight sublinear arguments without a trusted setup. In: CCS, Ligero (2017)
armfazh. flo-shani-aesni. https://github.com/armfazh/flo-shani-aesni
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: IEEE S &P (2018)
Baum, C., Bootle, J., Cerulli, A., Del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In: CRYPTO (2018)
Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Decentralized anonymous payments from bitcoin. In: IEEE S &P, Zerocash (2014)
Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12
Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification from tensor codes. In: TCC (2020)
Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time prover and polylogarithmic-time verifier. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 275–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_10
Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Recursive zk-SNARKs from any additive polynomial commitment scheme. Cryptology ePrint Archive, Report 2020/1536 (2020)
Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: CCS (2020)
Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Verifying computations with state. In: SOSP (2013)
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Eurocrypt (2020)
Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to succinct quantum-safe zero-knowledge. In: CRYPTO (2020)
Baum, C., Malozemoff, A.J., Rosen, M., Scholl, P.: Mac’n’cheese: zero-knowledge proofs for arithmetic circuits with nested disjunctions. In: CRYPTO (2021)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In: CRYPTO (2019)
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Verifying program executions succinctly and in zero knowledge. In: CRYPTO, SNARKs for C (2013)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Eurocrypt (2019)
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: CRYPTO (2014)
Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: CCS (2017)
Costello, C., Zahur, S.: Versatile verifiable computation. In: IEEE S &P, Geppetto (2015)
Chiesa, A., Yuncong, H., Maller, M., Mishra, P., Vesely, N., Ward, N.: Preprocessing zksnarks with universal and updatable SRS. In: Eurocrypt, Marlin (2020)
Chiesa, A., Ojha, D., Spooner, N.: Post-quantum and transparent recursive proofs from holography. In: Eurocrypt, Fractal (2020)
Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: STOC (2002)
Czumaj, A., Sohler, C.: Testing expansion in bounded-degree graphs. In: IEEE FOCS (2007)
Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-varshamov bound and their cryptographic applications. In: ITCS (2014)
Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with power estimation. In: Soviet Math. Doklady (1970)
Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applications. In: ITC (2021)
Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: CRYPTO (2019)
Fang, Z., Darais, D., Near, J., Zhang, Y.: Zero knowledge static program analysis. In: CCS (2021)
Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash first, argue later: adaptive verifiable computations on outsourced data. In: CCS (2016)
Feng, B., Qin, L., Zhang, Z., Ding, Y., Chu, S.: ZEN: efficient zero-knowledge proofs for neural networks. Cryptology ePrint Archive, Report 2021/087 (2021)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: CRYPTO (1986)
Grubbs, P., Arun, A., Bonneau, J., Walfish, M.: Zero-knowledge middleboxes. In: USENIX Security, Ye Zhang (2022)
Gilbert, E.N.: A comparison of signalling alphabets. Bell Syst. Tech. J. 31(3), 504–522 (1952)
Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: CRYPTO (2018)
Goldwasser, S., Kalai, Y.T., Rothblum, G.: Delegating computation: interactive proofs for muggles. In: STOC (2008)
Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: linear-time and post-quantum snarks for r1cs. Cryptology ePrint Archive (2021). https://ia.cr/2021/1043
Giacomelli, I., Madsen, J., Orlandi, C.: Faster zero-knowledge for boolean circuits. In: USENIX Security, ZKBoo (2016)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Goldberg, A.V.: Finding a maximum density subgraph. University of California Berkeley (1984)
Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 68–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_9
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019)
Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43(4), 439–561 (2006)
Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-verifier zksnarks from lattices. In: CCS (2021)
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC (1992)
Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: CCS (2018)
Kosba, A.E., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: succinct arguments for randomized algorithms with applications to universal zk-SNARKs. In: USENIX Security (2020)
Khot, S., Saket, R.: Hardness of bipartite expansion. In: ESA (2016)
Lee, S., Ko, H., Kim, J., Oh, H.: vCNN: Verifiable convolutional neural network based on zk-SNARKs. Cryptology ePrint Archive, Report 2020/584 (2020)
Liu, T., Xie, X., Zhang, Y.: zkCNN: zero knowledge proofs for convolutional neural network predictions and accuracy. In: CCS (2021)
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks from linear-size universal and updatable structured reference strings. In: CCS (2019)
Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)
Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann. Math. Artif. Intell. 56(3), 313–338 (2009)
Nachmias, A., Shapira, A.: Testing the expansion of a graph. Electr. Colloquium Comput. Complex. (ECCC) 14, 01 (2007)
Parno, B., Howell, J., Gentry, C., Raykova, M.: Nearly practical verifiable computation. In: IEEE S &P, Pinocchio (2013)
Pippenger, N.: On the evaluation of powers and related problems. In: SFCS, IEEE Computer Society (1976)
Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness length. In: FOCS (2020)
Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In: CRYPTO (2020)
Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs. Cryptology ePrint Archive, Report 2020/1275 (2020)
Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inf. Theor. 42(6), 1723–1731 (1996)
Song, D., Zuckerman, D., Tygar, J.D.: Expander graphs for digital stream authentication and robust overlay networks. In: S &P, IEEE (2002)
Varshamov, R.R.: Estimate of the number of signals in error correcting codes. Docklady Akad. Nauk, SSSR 117, 739–741 (1957)
Wahby, R.S.: lcpc authors. lcpc. https://github.com/conroi/lcpc
Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and control flow in verifiable outsourced computation. In: NDSS (2015)
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: S &P (2018)
Weng, C/. Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In: S &P (2020)
Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: efficient conversions for zero-knowledge proofs with applications to machine learning. In: USENIX Security (2021)
Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Succinct zero-knowledge proofs with optimal prover computation. In: CRYPTO, Libra (2019)
Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: efficient and affordable zero-knowledge proofs for circuits and polynomials over any field. In: CCS (2021)
Zcash. https://z.cash/
Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for decision tree predictions and accuracy. In: CCS (2020)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: S &P (2017)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-knowledge version of vSQL. Cryptology ePrint Archive: Report 2017/1146 (2017)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM: faster verifiable RAM with program-independent preprocessing. In: S &P (2018)
An incomplete guide to rollups. https://vitalik.ca/general/2021/01/05/rollup.html
Zhang, J., et al.: Doubly efficient interactive proofs for general arithmetic circuits with linear prover time. In: CCS (2021)
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: S &P, IEEE (2020)
Acknowledgements
We thank Yuval Ishai for helpful discussions and valuable feedback on the paper. The material is supported by DARPA under Contract No. HR001120C0087, the NSF award #2144625 and the Center for Long-Term Cybersecurity (CLTC). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA, NSF or CLTC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Xie, T., Zhang, Y., Song, D. (2022). Orion: Zero Knowledge Proof with Linear Prover Time. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13510. Springer, Cham. https://doi.org/10.1007/978-3-031-15985-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-15985-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15984-8
Online ISBN: 978-3-031-15985-5
eBook Packages: Computer ScienceComputer Science (R0)