Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Approach to Designating Ontology Attribute Semantics

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2022)

Abstract

In our previous works, we have developed a novel approach to ontologies that provides a notion of attributes semantics. We have noticed that attributes by themselves contain no explicit meaning besides being a carrier of values, and gain such only if included within a concept. The biggest difficulty while creating and maintaining ontologies using our formal framework is asserting the consistency of vocabulary used to express the aforementioned semantics. The following article presents the method for automatic designating of attributes semantics in ontologies. We extend our previous work where a semi-automatic method has been proposed. The new approach utilizes Word2Vec similarity (incorporating the Genism library) and the WordNet lexical database. The experiments confirmed the usefulness of the framework by comparing attribute semantics created by experts manually and using the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://spacy.io/.

  2. 2.

    https://radimrehurek.com/gensim_3.8.3/models/word2vec.html.

References

  1. Chen, R.C., Bau, C.T., Yeh, C.J.: Merging domain ontologies based on the WordNet system and fuzzy formal concept analysis techniques. Appl. Soft Comput. 11(2), 1908–1923 (2011)

    Article  Google Scholar 

  2. Cross, V., Hu, X.: In Proceedings of the 6th International Conference on Ontology Matching - Volume 814 (OM’11). CEUR-WS.org, Aachen, DEU, pp. 61–72 (2011)

    Google Scholar 

  3. Dou, D., McDermott, D., Qi, P.: Ontology translation on the semantic Web. In: Spaccapietra, S., Bertino, E., Jajodia, S., King, R., McLeod, D. (eds.) Journal on Data Semantics II, pp. 35–57. Springer, Berlin, Germany (2005)

    Chapter  MATH  Google Scholar 

  4. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 231–243. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_10

    Chapter  Google Scholar 

  5. Fellbaum, C., Hicks, A.: When WordNet met ontology. Ontology Makes Sense 136–151 (2019). https://doi.org/10.3233/978-1-61499-830-3-30

  6. Hnatkowska, B., Kozierkiewicz, A., Pietranik, M.: Semi-automatic definition of attribute semantics for the purpose of ontology integration. IEEE Access 8, 107272–107284 (2020). https://doi.org/10.1109/ACCESS.2020.3000035

    Article  Google Scholar 

  7. Kanika, C.S., Chakraborty, P., Aggarwal, A., Madan, M., Gupta, G.: Enriching WordNet with subject specific out of vocabulary terms using existing ontology. In: Nanda, P., Verma, V.K., Srivastava, S., Gupta, R.K., Mazumdar, A.P. (eds.) Data Engineering for Smart Systems. LNNS, vol. 238. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2641-8_19

  8. Kwak, J., Yong, H.S.: Ontology matching based on hypernym, hyponym, holonym, and meronym sets in WordNet. Int. J. Web Semantic Technol. 1(2), 1–14 (2010)

    Article  Google Scholar 

  9. Li, Z., Tate, D.: Automatic ontology generation from patents using a pre-built library, WordNet and a class-based n-gram model. Int. J. Prod. Dev. 20(2), 142–172 (2015)

    Article  Google Scholar 

  10. http://oaei.ontologymatching.org

  11. Pietranik, M., Nguyen, N.T.: A multi-attribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). https://doi.org/10.1016/j.neucom.2014.03.067

    Article  Google Scholar 

  12. Schadd, F.C., Roos, N.: Coupling of word net entries for ontology mapping using virtual documents. In: Proceedings of the 7th International Conference on Ontology Matching, vol. 946, pp. 25–36 (2012)

    Google Scholar 

  13. Yatskevich, M., Giunchiglia, F.: Element level semantic matching using WordNet. In: Proceedings of the Meaning Coordination Negotiation Workshop at ISWC, pp. 37–48 (2004)

    Google Scholar 

  14. http://github.com/radioarm/wordnet-attributes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Pietranik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hnatkowska, B., Kozierkiewicz, A., Pietranik, M., Truong, H.B. (2022). Hybrid Approach to Designating Ontology Attribute Semantics. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16014-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16013-4

  • Online ISBN: 978-3-031-16014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics