Abstract
The Controller Area Network (CAN) protocol used in vehicles today was designed to be fast, reliable, and robust. However, it is inherently insecure due to its lack of any kind of message authentication. Despite this, CAN is still used extensively in the automotive industry for various electronic control units (ECUs) and sensors which perform critical functions such as engine control. This paper presents a novel methodology for in-vehicle security through fingerprinting of ECUs. The proposed research uses the fingerprints injected in the signal due to material imperfections and semiconductor impurities. By extracting features from the physical CAN signal and using them as inputs for a machine learning algorithm, it is possible to determine the sender ECU of a packet. A high classification accuracy of up to 100.0% is possible when every node on the bus has a sufficiently different channel length.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avatefipour, O., Hafeez, A., Tayyab, M., Malik, H.: Linking received packet to the transmitter through physical-fingerprinting of controller area network. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS), IEEE (2017)
Cho, K.T., Shin, K.: Viden: attacker identification on in-vehicle networks. In: 2017 ACM SIGSAC Conference on Computer and Communications Security, ACM, pp. 1109–1123 (2017)
Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: USENIX Security Symposium, pp. 911–927 (2016)
Choi, W., Jo, H.J., Woo, S., Chun, J.Y., Park, J., Lee, D.H.: Identifying ecus using inimitable characteristics of signals in controller area networks. IEEE Trans. Veh. Technol. 67(6), 4757–4770 (2018)
Choi, W., Joo, K., Jo, H.J., Park, M.C., Lee, D.H.: Voltageids: low-level communication characteristics for automotive intrusion detection system. IEEE Trans. Inf. Forensics Secur. 13(8), 2114–2129 (2018)
Doan, T.P., Ganesan, S.: Can Crypto FPGA Chip to Secure Data Transmitted through CAN FD Bus using AES-128 and SHA-1 Algorithms with a Symmetric Key. Technical report, SAE Technical Paper (2017)
Hady, A.A., Ghubaish, A., Salman, T., Unal, D., Jain, R.: Intrusion detection system for healthcare systems using medical and network data: a comparison study. IEEE Access 8, 106576–106584 (2020)
Hafeez, A.: A robust, reliable and deployable framework for in-vehicle security (2020)
Hafeez, A., Malik, H., Vatefipour, O., Raj Rongali, P., Zehra, S.: Comparative study of CAN-bus and flexray protocols for in-vehicle communication. Technical report, SAE Technical Paper (2017)
Hafeez, A., Mohan, J., Girdhar, M., Awad, S.S.: Machine Learning based ECU detection for automotive security. In: 2021 17th International Computer Engineering Conference (ICENCO), IEEE (2021)
Hafeez, A., Ponnapali, S.C., Malik, H.: Exploiting channel distortion for transmitter identification for in-vehicle network security. In: SAE International Journal of Transportation Cybersecurity and Privacy, 3(11-02-02-0005) (2020)
Hafeez, A., Rehman, K., Malik, H.: State of the Art Survey on Comparison of Physical Fingerprinting-Based Intrusion Detection Techniques for in-Vehicle Security. Technical report, SAE Technical Paper (2020)
Hafeez, A., Tayyab, M., Zolo, C., Awad, S.: Finger printing of engine control units by using frequency response for secure in-vehicle communication. In: 2018 14th International Computer Engineering Conference (ICENCO), IEEE, pp. 79–83 (2018)
Hafeez, A., Topolovec, K., Awad, S.: ECU fingerprinting through parametric signal modeling and artificial neural networks for in-vehicle security against spoofing attacks. In: 2019 15th International Computer Engineering Conference (ICENCO), IEEE, pp. 29–38 (2019)
Hafeez, A., Topolovec, K., Zolo, C., Sarwar, W.: State of the Art Survey on Comparison of CAN, FlexRay, LIN Protocol and Simulation of LIN Protocol. Technical report, SAE Technical Paper (2020)
Han, M.L., Lee, J., Kang, A.R., Kang, S., Park, J.K., Kim, H.K.: A statistical-based anomaly detection method for connected cars in Internet of things environment. In: Hsu, C.-H., Xia, F., Liu, X., Wang, S. (eds.) IOV 2015. LNCS, vol. 9502, pp. 89–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27293-1_9
Hazem, A., Fahmy, H.: LCAP- a lightweight CAN authentication protocol for securing in-vehicle networks. In: 10th ESCAR Embedded Security in Cars Conference, vol. 6 (2012)
Jain, N., Sharma, S.: The role of decision tree technique for automating intrusion detection system. In: International Journal of Computational Engineering Research, vol. 2(4) (2012)
Kang, M.J., Kang, J.W.: Intrusion detection system using deep neural network for in-vehicle network security. PLoS one 11(6), e0155781 (2016)
Kneib, M., Huth, C.: Scission: Signal characteristic-based sender identification and intrusion detection in automotive networks. In: 2018 ACM SIGSAC Conference on Computer and Communications Security, ACM, pp. 787–800 (2018)
Lee, H., Jeong, S.H., Kim, H.K.: OTIDS: a novel intrusion detection system for in-vehicle network by using remote frame. In: 2017 15th Annual Conference on Privacy, Security, and Trust (PST), IEEE (2017)
Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through analysis of id sequences. In: 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, pp. 1577–1583 (2017)
Marchetti, M., Stabili, D., Guido, A., Colajanni, M.: Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), IEEE (2016)
Markovitz, M., Wool, A.: Field classification, modeling and anomaly detection in unknown can bus networks. Veh.Commun. 9, 43–52 (2017)
MathWorks: MATLAB Statistics and Machine Learning Toolbox (2021)
Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA (2015)
S. N. Narayanan, S. Mittal, and A. Joshi. Using data analytics to detect anomalous states in vehicles (2015) arXiv:1512.08048
Refat, R.U.D., Elkhail, A.A., Hafeez, A., Malik, H.: Detecting CAN bus intrusion by applying machine learning method to graph based features. In: Arai, K. (ed.) IntelliSys 2021. LNNS, vol. 296, pp. 730–748. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82199-9_49
Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In: 2016 International Conference on Information Networking (ICOIN), IEEE, pp. 63–68 (2016)
Stabili, D., Marchetti, M., Colajanni, M.: Detecting attacks to internal vehicle networks through hamming distance. In: 2017 AEIT International Annual Conference, IEEE (2017)
Sugashima, T., Oka, D.K., Vuillaume, C.: Approaches for secure and efficient in-vehicle key management. In: SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 9(2016-01-0070):100–106 (2016)
Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the automotive CAN bus. In: 2015 World Congress on Industrial Control Systems Security (WCICSS), IEEE, pp. 45–49 (2015)
Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data with long short-term memory networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE, pp. 130–139 (2016)
Tayyab, M., Hafeez, A., Malik, H.: Spoofing attack on clock based intrusion detection system in controller area networks. In: Proceedings of the NDIA Ground Vehicle Systems Engineering Technology Symp, pp. 1–13 (2018)
Ueda, H., Kurachi, R., Takada, H., Mizutani, T., Inoue, M., Horihata, S.: Security authentication system for in-vehicle network. SEI Tech. Rev. 81, 5–9 (2015)
Wasicek, A.R., Pesé, M.D., Weimerskirch, A., Burakova, Y., Singh, K.: Context-aware intrusion detection in automotive control systems. In: ACM/IEEE 6th International Conference on Cyber-Physical Systems (ICCPS), IEEE, pp. 41–50 (2015)
Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In: Workshop on Embedded Security in Cars (2004)
Wu, W., Huang, Y., Kurachi, R., Zeng, G., Xie, G., Li, R., Li, K.: Sliding window optimized information entropy analysis method for intrusion detection on in-vehicle networks. IEEE Access 6, 45233–45245 (2018)
Zuo, M., Xie, S., Zhang, X., Yang, M.: Recognition of UAV video signal using RF fingerprints in the presence of Wifi interference. IEEE Access 9, 88844–88851 (2021)
Acknowledgment
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for supporting this work through the project # DRI-KSU-934. This research is also partly supported by National Science Foundation (NSF) under the award # 2035770.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bellaire, S., Bayer, M., Hafeez, A., Refat, R.U.D., Malik, H. (2023). Fingerprinting ECUs to Implement Vehicular Security for Passenger Safety Using Machine Learning Techniques. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 544. Springer, Cham. https://doi.org/10.1007/978-3-031-16075-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-16075-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16074-5
Online ISBN: 978-3-031-16075-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)