Abstract
Eigen value decomposition utilizing method for data hiding based on wavelet Multi-Resolution Analysis (MRA) is proposed. It is possible to improve an invisibility of the hidden information by using eigen value decomposition as a preprocessing of the conventional wavelet Multi-Resolution Analysis (MRA) based method. In the proposed method, the information of the key image is protected by the existence of the eigenvector. That is, the key image information can be restored only if the true original image information is known. The coefficient of eigen value decomposition differs for each original image and is composed of the eigenvectors of the original image. In a 3-band color image, a method involving Hue Saturation Intensity (HIS) conversion, or the like can be considered for the purpose of protecting the information of the key image, but the conversion coefficient such as HSI conversion is a well-known coefficient. Since the conversion coefficient of the method involving HSI conversion is well known, there is a possibility that a third party may obtain the information of the key image. The effectiveness of the proposed method is confirmed from the viewpoint of protecting the information of the key image.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koshio, M.: Basics of Digital Watermarking, Morikita Publishing (2000)
Kawai, J.: Watermark-Genuine proof/paper plow (watermark). J. Inst. Image Electron. 31(2), 253–260 (2002)
Kawaguchi, E., Noda, H., Niimi, M.: On digital steganography technology. J. Soc. Image Electron. Electron. 31(3), 414–420 (2002)
Cox, I.J., Killian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)
Okamoto, A., Miyazaki, A.: Digital watermarking method using morphological signal processing. J. Inst. Electron., Inform. Commun. Eng. 84(8), 1037–1044 (2001)
Inoue, N., Miyazaki, A., Shimazu, M., Katsura, T.: Digital watermarking method for image signals using wavelet transform. J. Video Inform. Media 52(12), 1832–1839 (1998)
Ouellette, R., Noda, H., Niimi, M., Kawaguchi, E.: Topological ordered color table for BPCS steganography using indexed color images. IPSJ J. 42(1), 110–113 (2001)
Hidetoshi, S., Yuji, M., Suzu, K., Yoshinao, A.: Color image digital watermarking method using fresnel transformation in image compression. IEICE Technical Report, pp. 43–48 (2000)
Kohei, A.: Decomposition of SAR polarization signatures by means of eigen-space representation. In: Proc. of the Synthetic Aperture Radar Workshop ‘98 (1998)
Kohei, A., Wang, J.: Polarimetric SAR image classification with maximum curvature of the trajectory in eigen space domain on the polarization signature. In: Abstracts of the 35th Congress of the Committee on Space Research of the ICSU, A3.1-0061-04 (2004)
Kohei, A., Wang, J.: Polarimetric SAR image classification with maximum curvature of the trajectory in eigen space domain on the polarization signature. Adv. Space Res. 39(1), 149–154 (2007)
Arai, K.: Method for face identification with facial action coding system: FACS based on eigen value decomposition. Int. J. Adv. Res. Artif. Intell. 1(9), 34–38 (2012)
Kohei, A.: Prediction method for time series of imagery data in eigen space. Int. J. Adv. Res. Artif. Intell. 2(1), 12–19 (2013)
Kohei, A, Yuji, Y.: Data hiding method which robust to run-length data compression based on lifting dyadic wavelet transformation. In: Proceedings of the 11th Asian Symposium on Visualization, ASV-11-08-11, pp. 1–8 (2011)
Arai, K., Yamada, Y.: Improvement of secret image invisibility in circulation image with Dyadic wavelet-based data hiding with run-length coding. Int. J. Adv. Comput. Sci. Appl. 2(7), 33–40 (2011)
Arai, K.: Data hiding method based on Dyadic wavelet transformation improving in-visibility of secret images on circulation images by means of run length coding with permutation matrix based on random number. Proc. Inform. Technol. Next Gener.: ITNG Conf. 2012, 189 (2012)
Kohei, A.: Method for data hiding based on Legall 5/2 (Cohen-Daubechies-Feauveau: CDF 5/3) wavelet with data compression and random scanning of secret imagery data. Int. J. Wavelets Multi Solut. Inform. Process. 11(4), 1–18 (2013)
Arai, K.: Data hiding method replacing LSB of hidden portion for secrete image with run-length coded image. Int. J. Adv. Res. Artif. Intell. 5(12), 8–16 (2016)
Arai, C.R.K., Prasetyo, A., Arigki, N.: Noble method for data hiding using steganography discrete wavelet transformation and cryptography triple data encryption standard: DES. Int. J. Adv. Comput. Sci. Appl. IJACSA 9(11), 261–266 (2018)
Kohei, A.: Data hiding method with eigen value analysis and image coordinate conversion. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 12(8), 25–30 (2021)
Acknowledgment
The authors would like to thank Professor Dr. Hiroshi Okumura and Professor Dr. Osamu Fukuda of Saga University for their valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arai, K. (2023). Eigen Value Decomposition Utilizing Method for Data Hiding Based on Wavelet Multi-resolution Analysis. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 544. Springer, Cham. https://doi.org/10.1007/978-3-031-16075-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-16075-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16074-5
Online ISBN: 978-3-031-16075-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)