Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Context-Aware Deviations in Process Executions

  • Conference paper
  • First Online:
Business Process Management Forum (BPM 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 458))

Included in the following conference series:

Abstract

A deviation detection aims to detect deviating process instances, e.g., patients in the healthcare process and products in the manufacturing process. A business process of an organization is executed in various contextual situations, e.g., a COVID-19 pandemic in the case of hospitals and a lack of semiconductor chip shortage in the case of automobile companies. Thus, context-aware deviation detection is essential to provide relevant insights. However, existing work 1) does not provide a systematic way of incorporating various contexts, 2) is tailored to a specific approach without using an extensive pool of existing deviation detection techniques, and 3) does not distinguish positive and negative contexts that justify and refute deviation, respectively. In this work, we provide a framework to bridge the aforementioned gaps. We have implemented the proposed framework as a web service that can be extended to various contexts and deviation detection methods. We have evaluated the effectiveness of the proposed framework by conducting experiments using 255 different contextual scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.cpntools.org.

References

  1. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)

    Google Scholar 

  2. van der Aalst, W.M.P., Dustdar, S.: Process mining put into context. IEEE Internet Comput. 16(1), 82–86 (2012)

    Article  Google Scholar 

  3. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 38(1), 33–44 (2013)

    Article  Google Scholar 

  4. Böhmer, K., Rinderle-Ma, S.: Anomaly detection in business process runtime behavior - challenges and limitations. CoRR abs/1705.06659 (2017)

    Google Scholar 

  5. Böhmer, K., Rinderle-Ma, S.: Multi instance anomaly detection in business process executions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 77–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_5

    Chapter  Google Scholar 

  6. Böhmer, K., Rinderle-Ma, S.: Mining association rules for anomaly detection in dynamic process runtime behavior and explaining the root cause to users. Inf. Syst. 90, 101438 (2020)

    Article  Google Scholar 

  7. Dockhorn Costa, P., Almeida, J.P.A., Ferreira Pires, L., van Sinderen, M.: Situation specification and realization in rule-based context-aware applications. In: Indulska, J., Raymond, K. (eds.) Distributed Applications and Interoperable Systems, pp. 32–47 (2007)

    Google Scholar 

  8. Jalali, H., Baraani, A.: Genetic-based anomaly detection in logs of process aware systems. World Acad. Sci. Eng. Technol. 64(4), 304–309 (2010)

    Google Scholar 

  9. Kronsbein, D., Meiser, D., Leyer, M.: Conceptualisation of contextual factors for business process performance. Lecture Notes in Engineering and Computer Science 2210 (2014)

    Google Scholar 

  10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  11. Li, G., van der Aalst, W.M.P.: A framework for detecting deviations in complex event logs. Intell. Data Anal. 21(4), 759–779 (2017)

    Article  Google Scholar 

  12. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2015). https://doi.org/10.1007/s00607-015-0441-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process anomalies using autoencoders. Mach. Learn. 107(11), 1875–1893 (2018). https://doi.org/10.1007/s10994-018-5702-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: BINet: Multi-perspective business process anomaly classification. CoRR abs/1902.03155 (2019)

    Google Scholar 

  15. Pauwels, S.: An anomaly detection technique for business processes based on extended dynamic Bayesian networks. In: Proceedings of the ACM Symposium on Applied Computing Part, F1477, pp. 494–501 (2019)

    Google Scholar 

  16. Song, R., Vanthienen, J., Cui, W., Wang, Y., Huang, L.: Towards a comprehensive understanding of the context concepts in context-aware business processes. In: Betz, S. (ed.) S-BPM ONE 2019, pp. 5:1–5:10 (2019)

    Google Scholar 

  17. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system calls: Alternative data models. In: 1999 IEEE Symposium on Security and Privacy, pp. 133–145 (1999)

    Google Scholar 

  18. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyunam Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, G., Benzin, JV., van der Aalst, W.M.P. (2022). Detecting Context-Aware Deviations in Process Executions. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds) Business Process Management Forum. BPM 2022. Lecture Notes in Business Information Processing, vol 458. Springer, Cham. https://doi.org/10.1007/978-3-031-16171-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16171-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16170-4

  • Online ISBN: 978-3-031-16171-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics