Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Embedded Implementation of an Algorithm for Online Inertia Estimation in Power Grids

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

  • 1496 Accesses

Abstract

The energy transition is an issue of major importance worldwide and entails the gradual replacement of fossil fuels technologies with renewable energy sources (RES) for electric power production. However, integrating photovoltaic and wind power plants in traditional power grids threatens the stability of the system if no additional synthetic inertia is provided by control systems. Due to the intermittent nature of RES, the inertia of the power plants and of the entire grid is time-varying, calling the need for online monitoring methods. In this paper, we implement on a microcontroller an algorithm for online estimation of the inertia constant and damping coefficient of individual energy sources. The behavior of this embedded implementation is analyzed with respect to some key parameters and tested on the IEEE 14-bus power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A different update time, greater than \(\Delta t\), could also be used.

References

  1. Kundur, P.: Power System Stability and Control. McGraw-Hill Inc. (1994)

    Google Scholar 

  2. Panda, R.K., Mohapatra, A., Srivastava, S.C.: Online estimation of system inertia in a power network utilizing synchrophasor measurements. IEEE Trans. Power Syst. 35(4), 3122–3132 (2019)

    Article  Google Scholar 

  3. Cai, G., Wang, B., Yang, D., Sun, Z., Wang, L.: Inertia estimation based on observed electromechanical oscillation response for power systems. IEEE Trans. Power Syst. 34(6), 4291–4299 (2019)

    Article  Google Scholar 

  4. del Giudice, D., Grillo, S.: Analysis of the sensitivity of extended Kalman filter-based inertia estimation method to the assumed time of disturbance. Energies 12(3), 483 (2019)

    Google Scholar 

  5. Zhang, J., Xu, H.: Online identification of power system equivalent inertia constant. IEEE Trans. Industr. Electron. 64(10), 8098–8107 (2017)

    Article  Google Scholar 

  6. Cao, X., Stephen, B., Abdulhadi, I.F., Booth, C.D., Burt, G.M.: Switching Markov gaussian models for dynamic power system inertia estimation. IEEE Trans. Power Syst. 31(5), 3394–3403 (2015)

    Article  Google Scholar 

  7. Allella, F., Chiodo, E., Giannuzzi, G.M., Lauria, D., Mottola, F.: On-line estimation assessment of power systems inertia with high penetration of renewable generation. IEEE Access 8, 62689–62697 (2020)

    Article  Google Scholar 

  8. Zeng, F., Zhang, J., Chen, G., Wu, Z., Huang, S., Liang, Y.: Online estimation of power system inertia constant under normal operating conditions. IEEE Access 8, 101426–101436 (2020)

    Article  Google Scholar 

  9. Zhou, N., Pierre, J.W., Hauer, J.F.: Initial results in power system identification from injected probing signals using a subspace method. IEEE Trans. Power Syst. 21(3), 1296–1302 (2006)

    Article  Google Scholar 

  10. Baruzzi, V., Lodi, M., Oliveri, A., Storace, M.: Analysis and improvement of an algorithm for the online inertia estimation in power grids with RES. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5, May 2021

    Google Scholar 

  11. Makolo, P., Zamora, R., Lie, T.: Online inertia estimation for power systems with high penetration of RES using recursive parameters estimation. IET Renew. Power Gener. 15, 2571–2585 (2021)

    Article  Google Scholar 

  12. Anderson, P.M., Aziz A.: Power System Control and Stability. John Wiley & Sons, Fouad (2008)

    Google Scholar 

  13. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)

    Google Scholar 

  14. Ravera, A., Oliveri, A., Lodi, M., Storace, M.: Embedded linear model predictive control through mesh adaptive direct search algorithm. In: Proceedings of the 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 542-545, November 2019

    Google Scholar 

  15. Milano, F.: Power System Modelling and Scripting. Springer Science & Business Media (2010). https://doi.org/10.1007/978-3-642-13669-6

  16. Bizzarri, F., Brambilla, A.: PAN and MPanSuite: simulation vehicles towards the analysis and design of heterogeneous mixed electrical systems. In: 2017 New Generation of CAS (NGCAS), pp. 1-4, September 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Oliveri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravera, A., Baruzzi, V., Lodi, M., Oliveri, A., Storace, M. (2023). Embedded Implementation of an Algorithm for Online Inertia Estimation in Power Grids. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics