Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modelling Cycles in Brain Networks with the Hodge Laplacian

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

  • 7775 Accesses

Abstract

Cycles or loops in a network embed higher-order interactions beyond pairwise relations. The cycles are essential for the parallel processing of information and enable feedback loops. Despite the fundamental importance of cycles in understanding the higher-order connectivity, identifying and extracting them are computationally prohibitive. This paper proposes a novel persistent homology-based framework for extracting and modelling cycles in brain networks using the Hodge Laplacian. The method is applied in discriminating the functional brain networks of males and females. The code for modeling cycles through the Hodge Laplacian is provided in https://github.com/laplcebeltrami/hodge.

This study is funded by NIH R01 EB022856, EB02875, NSF MDS-2010778.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anand, D.V., Dakurah, S., Wang, B., Chung, M.K.: Hodge-Laplacian of brain networks and its application to modeling cycles. arXiv preprint arXiv:2110.14599 (2021)

  2. Battiston, F., et al.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

    Article  MathSciNet  Google Scholar 

  3. Buckner, R.L.: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009)

    Article  Google Scholar 

  4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)

    Article  Google Scholar 

  5. Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices with a homology basis and its applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 189–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31155-0_17

    Chapter  Google Scholar 

  6. Chen, C., Freedman, D.: Measuring and computing natural generators for homology groups. Comput. Geom. 43, 169–181 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chung, M.K., Huang, S.G., Songdechakraiwut, T., Carroll, I.C., Goldsmith, H.H.: Statistical analysis of dynamic functional brain networks in twins. arXiv preprint arXiv:1911.02731 (2019)

  8. Chung, M.K., Lee, H., DiChristofano, A., Ombao, H., Solo, V.: Exact topological inference of the resting-state brain networks in twins. Netw. Neurosci. 3, 674–694 (2019)

    Article  Google Scholar 

  9. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, pp. 345–354 (2014)

    Google Scholar 

  10. Edelsbrunner, H., Harer, J., et al.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  11. Farazi, M., Zhan, L., Lepore, N., Thompson, P.M., Wang, Y.: A univariate persistent brain network feature based on the aggregated cost of cycles from the nested filtration networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2020)

    Google Scholar 

  12. Giusti, C., Ghrist, R., Bassett, D.S.: Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41, 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  13. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  14. Hatcher, A., Press, C.U., of Mathematics, C.U.D.: Algebraic Topology. Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  15. Huang, S.G., Samdin, S.B., Ting, C.M., Ombao, H., Chung, M.K.: Statistical model for dynamically-changing correlation matrices with application to brain connectivity. J. Neurosci. Methods 331, 108480 (2020)

    Article  Google Scholar 

  16. Lee, H., Chung, M.K., Kang, H., Lee, D.S.: Hole detection in metabolic connectivity of Alzheimer’s disease using k-Laplacian. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 297–304. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_38

    Chapter  Google Scholar 

  17. Lind, P.G., Gonzalez, M.C., Herrmann, H.J.: Cycles and clustering in bipartite networks. Phys. Rev. E 72, 056127 (2005)

    Article  Google Scholar 

  18. Meunier, D., Lambiotte, R., Fornito, A., Ersche, K., Bullmore, E.T.: Hierarchical modularity in human brain functional networks. Front. Neuroinf. 3, 37 (2009)

    Article  Google Scholar 

  19. Petri, G., et al.: Homological scaffolds of brain functional networks. J. Roy. Soc. Interface 11, 20140873 (2014)

    Article  Google Scholar 

  20. Reani, Y., Bobrowski, O.: Cycle registration in persistent homology with applications in topological bootstrap. arXiv preprint arXiv:2101.00698 (2021)

  21. Sizemore, A.E., Giusti, C., Kahn, A., Vettel, J.M., Betzel, R.F., Bassett, D.S.: Cliques and cavities in the human connectome. J. Comput. Neurosci. 44(1), 115–145 (2017). https://doi.org/10.1007/s10827-017-0672-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Sizemore, A.E., Phillips Cremins, J.E., Ghrist, R., Bassett, D.S.: The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3, 656–673 (2019)

    Article  Google Scholar 

  23. Songdechakraiwut, T., Shen, L., Chung, M.: Topological learning and its application to multimodal brain network integration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 166–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_16

    Chapter  Google Scholar 

  24. Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological aggregation models. PloS one 10, e0126383 (2015)

    Article  Google Scholar 

  25. Torres, L., Blevins, A.S., Bassett, D., Eliassi-Rad, T.: The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021)

    Article  MathSciNet  Google Scholar 

  26. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  27. Van Essen, D.C., et al.: The WU-MINN human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  28. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012)

    Article  Google Scholar 

  29. Yates, R.C.: Curves and their properties (1974)

    Google Scholar 

  30. Zhan, L., et al.: The significance of negative correlations in brain connectivity. J. Comp. Neurol. 525, 3251–3265 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixtus Dakurah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dakurah, S., Anand, D.V., Chen, Z., Chung, M.K. (2022). Modelling Cycles in Brain Networks with the Hodge Laplacian. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics