Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm).

D. Lüdke and T. Amiranashvili—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    nda.nih.gov/oai.

References

  1. Ambellan, F., Lamecker, H., von Tycowicz, C., Zachow, S.: Statistical shape models: understanding and mastering variation in anatomy. In: Rea, P.M. (ed.) Biomedical Visualisation. AEMB, vol. 1156, pp. 67–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19385-0_5

    Chapter  Google Scholar 

  2. Ambellan, F., Hanik, M., von Tycowicz, C.: Morphomatics: geometric morphometrics in non-Euclidean shape spaces (2021). https://doi.org/10.12752/8544

  3. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  4. Ambellan, F., Zachow, S., von Tycowicz, C.: Rigid motion invariant statistical shape modeling based on discrete fundamental forms: Data from the osteoarthritis initiative and the Alzheimer’s disease neuroimaging initiative. Med. Image Anal. 73, 102178 (2021)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)

    Google Scholar 

  6. Charon, N., Islam, A., Zbijewski, W.: Landmark-free morphometric analysis of knee osteoarthritis using joint statistical models of bone shape and articular space variability. J. Med. Imaging 8(4), 044001 (2021)

    Article  Google Scholar 

  7. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Unders. 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Davies, R.H.: Learning shape: optimal models for analysing natural variability. The University of Manchester, United Kingdom (2002)

    Google Scholar 

  11. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 90(2), 255–266 (2010)

    Article  Google Scholar 

  12. Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)

    Article  Google Scholar 

  13. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  14. Gupta, K., Chandraker, M.: Neural mesh flow: 3D manifold mesh generation via diffeomorphic flows. Adv. Neural Inf. Process. Syst. 33, 1747–1758 (2020)

    Google Scholar 

  15. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  16. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic PCA for riemannian manifolds modulo isometric lie group actions. Statistica Sinica 20(1), 1–58 (2010). ISSN 10170405, 19968507. http://www.jstor.org/stable/24308976. Accessed 06 Sept 2022

  17. Jiang, C., Huang, J., Tagliasacchi, A., Guibas, L.J.: ShapeFlow: learnable deformation flows among 3D shapes. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 9745–9757. Curran Associates, Inc. (2020)

    Google Scholar 

  18. Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proceedings of the MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, vol. 109, p. 116 (2007)

    Google Scholar 

  19. Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. (ToG) 32(3), 1–13 (2013)

    Article  Google Scholar 

  20. Kellgren, J.H., Lawrence, J.: Radiological assessment of osteo-arthrosis. Ann. Rheumatic Dis. 16(4), 494 (1957)

    Article  Google Scholar 

  21. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  22. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  23. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4D reconstruction by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5379–5389 (2019)

    Google Scholar 

  24. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  25. von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S.: An efficient riemannian statistical shape model using differential coordinates: with application to the classification of data from the osteoarthritis initiative. Med. Image Anal. 43, 1–9 (2018)

    Article  Google Scholar 

  26. Vaillant, M., Qiu, A., Glaunès, J., Miller, M.I.: Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus. NeuroImage 34(3), 1149–1159 (2007)

    Article  Google Scholar 

  27. Wang, L., et al.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26(4), 462–470 (2007)

    Article  Google Scholar 

  28. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF) through the research campus MODAL (ref. 3FO18501) and The Berlin Institute for the Foundations of Learning and Data (BIFOLD) - (ref. 01IS18025A and ref. 01IS18037A). We are grateful for the open-access dataset OAI. (The Osteoarthritis Initiative is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaz Amiranashvili .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 217 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S. (2022). Landmark-Free Statistical Shape Modeling Via Neural Flow Deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics