Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Show, Attend and Detect: Towards Fine-Grained Assessment of Abdominal Aortic Calcification on Vertebral Fracture Assessment Scans

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

More than 55,000 people world-wide die from Cardiovascular Disease (CVD) each day. Calcification of the abdominal aorta is an established marker of asymptomatic CVD. It can be observed on scans taken for vertebral fracture assessment from Dual Energy X-ray Absorptiometry machines. Assessment of Abdominal Aortic Calcification (AAC) and timely intervention may help to reinforce public health messages around CVD risk factors and improve disease management, reducing the global health burden related to CVDs. Our research addresses this problem by proposing a novel and reliable framework for automated “fine-grained” assessment of AAC. Inspired by the vision-to-language models, our method performs sequential scoring of calcified lesions along the length of the abdominal aorta on DXA scans; mimicking the human scoring process.

S. Z. Gilani and N. Sharif—Joint First Authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://github.com/NaehaSharif/Show-Attend-and-Detect

  2. Bernardi, R., et al.: Automatic description generation from images: a survey of models, datasets, and evaluation measures. J. Artif. Intell. Res. 55, 409–442 (2016)

    Article  Google Scholar 

  3. Chaplin, L., Cootes, T.: Automated scoring of aortic calcification in vertebral fracture assessment images. In: Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, pp. 811–819. SPIE (2019)

    Google Scholar 

  4. Elmasri, K., Hicks, Y., Yang, X., Sun, X., Pettit, R., Evans, W.: Automatic detection and quantification of abdominal aortic calcification in dual energy X-ray absorptiometry. Proc. Comput. Sci. 96, 1011–1021 (2016)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  6. Kauppila, L.I., Polak, J.F., Cupples, L.A., Hannan, M.T., Kiel, D.P., Wilson, P.W.: New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132(2), 245–250 (1997)

    Article  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Leow, K., et al.: Prognostic value of abdominal aortic calcification: a systematic review and meta-analysis of observational studies. J. Am. Heart Assoc. 10(2), e017205 (2021)

    Google Scholar 

  9. Lewis, J.R., et al.: Association between abdominal aortic calcification, bone mineral density, and fracture in older women. J. Bone Miner. Res. 34(11), 2052–2060 (2019)

    Article  Google Scholar 

  10. Lewis, J.R., et al.: Long-term atherosclerotic vascular disease risk and prognosis in elderly women with abdominal aortic calcification on lateral spine images captured during bone density testing: a prospective study. J. Bone Miner. Res. 33(6), 1001–1010 (2018)

    Article  Google Scholar 

  11. Lewis, J.R., et al.: Abdominal aortic calcification identified on lateral spine images from bone densitometers are a marker of generalized atherosclerosis in elderly women. Arterioscler. Thromb. Vasc. Biol. 36(1), 166–173 (2016)

    Article  Google Scholar 

  12. Lillemark, L., Ganz, M., Barascuk, N., Dam, E.B., Nielsen, M.: Growth patterns of abdominal atherosclerotic calcified deposits from lumbar lateral x-rays. Int. J. Cardiovasc. Imaging 26(7), 751–761 (2010)

    Article  Google Scholar 

  13. Pickhardt, P.J., et al.: Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit. Health 2(4), e192–e200 (2020)

    Article  Google Scholar 

  14. Radavelli-Bagatini, S., et al.: Modification of diet, exercise and lifestyle (model) study: a randomised controlled trial protocol. BMJ Open 10(11), e036366 (2020)

    Google Scholar 

  15. Reid, S., Schousboe, J.T., Kimelman, D., Monchka, B.A., Jozani, M.J., Leslie, W.D.: Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: a pilot study. Bone 148, 115943 (2021)

    Google Scholar 

  16. Roth, G.A., et al.: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76(25), 2982–3021 (2020)

    Article  Google Scholar 

  17. Schousboe, J.T., Lewis, J.R., Kiel, D.P.: Abdominal aortic calcification on dual-energy X-ray absorptiometry: methods of assessment and clinical significance. Bone 104, 91–100 (2017)

    Article  Google Scholar 

  18. Schousboe, J.T., Taylor, B.C., Kiel, D.P., Ensrud, K.E., Wilson, K.E., McCloskey, E.V.: Abdominal aortic calcification detected on lateral spine images from a bone densitometer predicts incident myocardial infarction or stroke in older women. J. Bone Miner. Res. 23(3), 409–416 (2008)

    Article  Google Scholar 

  19. Schousboe, J.T., Wilson, K.E., Kiel, D.P.: Detection of abdominal aortic calcification with lateral spine imaging using DXA. J. Clin. Densitom. 9(3), 302–308 (2006)

    Article  Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Strong, J.P., et al.: Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the pathobiological determinants of atherosclerosis in youth study. Jama 281(8), 727–735 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

The work was funded by a National Health and Medical Research Council (NH &MRC) of Australia Ideas grants (APP1183570). The salary of JRL is supported by a National Heart Foundation of Australia Future Leader Fellowship (ID: 102817). The study was approved by the Health Research Ethics Board for the University of Manitoba (HREB H2004:017L, HS20121). The Manitoba Health Information Privacy Committee approved access to the Manitoba data (HIPC 2016/2017-29). The results and conclusions are those of the authors and no official endorsement by Manitoba Health and Seniors Care, or other data providers is intended or should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zulqarnain Gilani .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 591 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilani, S.Z. et al. (2022). Show, Attend and Detect: Towards Fine-Grained Assessment of Abdominal Aortic Calcification on Vertebral Fracture Assessment Scans. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics