Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weakly-Supervised Biomechanically-Constrained CT/MRI Registration of the Spine

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are two of the most informative modalities in spinal diagnostics and treatment planning. CT is useful when analysing bony structures, while MRI gives information about the soft tissue. Thus, fusing the information of both modalities can be very beneficial. Registration is the first step for this fusion. While the soft tissues around the vertebra are deformable, each vertebral body is constrained to move rigidly. We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration. To achieve this goal, we introduce anatomy-aware losses for training the network. We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI. We evaluate our method on an in-house dataset of 167 patients. Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/BailiangJ/spine-ct-mr-registration.

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: A log-Euclidean framework for statistics on diffeomorphisms. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Bukas, C., et al.: Patient-specific virtual spine straightening and vertebra inpainting: an automatic framework for osteoplasty planning. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 529–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_51

  4. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143, (2019)

    Google Scholar 

  5. Fu, Y., et al.: Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks. Med. Phys. 48(1), 253–263 (2021)

    Article  Google Scholar 

  6. Gill, S., et al.: Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med. Image Anal. 16(3), 662–674 (2012)

    Google Scholar 

  7. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 726–733. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_89

    Chapter  Google Scholar 

  8. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl. 31(1), 1–18 (2020)

    Google Scholar 

  9. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

  10. Kim, G.U., Chang, M.C., Kim, T.U., Lee, G.W.: Diagnostic modality in spine disease: a review. Asian Spine Journal 14(6), 910 (2020)

    Article  Google Scholar 

  11. Kim, J., Matuszak, M.M., Saitou, K., Balter, J.M.: Distance-preserving rigidity penalty on deformable image registration of multiple skeletal components in the neck. Med. Phys. 40(12), (2013)

    Google Scholar 

  12. Little, J.A., Hill, D.L., Hawkes, D.J.: Deformations incorporating rigid structures. Comput. Vis. Image Underst. 66(2), 223–232 (1997)

    Google Scholar 

  13. McKenzie, E.M., Santhanam, A., Ruan, D., O’Connor, D., Cao, M., Sheng, K.: Multimodality image registration in the head-and-neck using a deep learning-derived synthetic ct as a bridge. Med. Phys. 47(3), 1094–1104 (2020)

    Google Scholar 

  14. Mok, Tony C. W.., Chung, Albert C. S..: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4

  15. Momin, S., et al.: CT-MRI pelvic deformable registration via deep learning. In: Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 11598, p. 1159818. International Society for Optics and Photonics (2021)

    Google Scholar 

  16. Parizel, P., et al.: Trauma of the spine and spinal cord: imaging strategies. Eur. Spine J. 19(1), 8–17 (2010)

    Google Scholar 

  17. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 452–461. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-40899-4_46

  18. Rohlfing, T., Maurer, C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imaging 22(6), 730–741 (2003)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  20. Sekuboyina, A., Rempfler, M., Kukačka, J., Tetteh, G., Valentinitsch, A., Kirschke, J.S., Menze, B.H.: Btrfly Net: vertebrae labelling with energy-based adversarial learning of local spine prior. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 649–657. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_74

  21. Shah, L.M., Salzman, K.L.: Imaging of spinal metastatic disease. Int. J. Surg. Oncol. 2011 (2011)

    Google Scholar 

  22. Sorkine-Hornung, O., Rabinovich, M.: Least-squares rigid motion using svd (2017)

    Google Scholar 

  23. Staring, M., Klein, S., Pluim, J.P.: A rigidity penalty term for nonrigid registration. Med. Phys. 34(11), 4098–4108 (2007)

    Google Scholar 

  24. Tins, B.: Technical aspects of ct imaging of the spine. Insights Imaging 1(5), 349–359 (2010)

    Google Scholar 

  25. Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Bavarian State Ministry of Economics in the frame of the BayVFP Funding Line Digitalization - Information and Communication Technology, grant DIK0127/01 (“DigiBiop”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailiang Jian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jian, B. et al. (2022). Weakly-Supervised Biomechanically-Constrained CT/MRI Registration of the Spine. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics