Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classification-Aided High-Quality PET Image Synthesis via Bidirectional Contrastive GAN with Shared Information Maximization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

Abstract

Positron emission tomography (PET) is a pervasively adopted nuclear imaging technique, however, its inherent tracer radiation inevitably causes potential health hazards to patients. To obtain high-quality PET image while reducing radiation exposure, this paper proposes an algorithm for high-quality standard-dose PET (SPET) synthesis from low-dose PET (LPET) image. Specifically, considering that LPET images and SPET images come from the same subjects, we argue that there is abundant shared content and structural information between LPET and SPET domains, which is helpful for improving synthesis performance. To this end, we innovatively propose a bi-directional contrastive generative adversarial network (BiC-GAN), containing a master network and an auxiliary network. Both networks implement intra-domain reconstruction and inter-domain synthesis tasks, aiming to extract shared information from LPET and SPET domains, respectively. Meanwhile, the contrastive learning strategy is also introduced to two networks for enhancing feature representation capability and acquiring more domain-independent information. To maximize the shared information extracted from two domains, we further design a domain alignment module to constrain the consistency of the shared information extracted from the two domains. On the other hand, since synthesized PET images can be used to assist disease diagnosis, such as mild cognitive impairment (MCI) identification, the MCI classification task is incorporated into PET image synthesis to further improve clinical applicability of the synthesized PET image through direct feedback from the classification task. Evaluated on a Real Human Brain dataset, our proposed method is demonstrated to achieve state-of-the-art performance quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, K.A., Schultz, A., Betensky, R.A., et al.: Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79(1), 110–119 (2016)

    Article  Google Scholar 

  2. Daerr, S., Brendel, M., Zach, C., et al.: Evaluation of early-phase [18 F]-florbetaben PET acquisition in clinical routine cases. NeuroImage Clin. 14, 77–86 (2017)

    Google Scholar 

  3. Huang, B., Law, M.W.M., Khong, P.L.: Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Med. Phys. 251(1), 166–174 (2009)

    Google Scholar 

  4. Wang, Y., Zhang, P., Ma, G., et al.: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Phys. Med. Biol. 61(2), 791–812 (2016)

    Article  Google Scholar 

  5. Kang, J., Gao, Y., Shi, F., et al.: Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F] FDG PET images. Med. Phys. 42(9), 5301–5309 (2015)

    Article  Google Scholar 

  6. Wang, Y., Ma, G., An, L., et al.: Semi-supervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans. Biomed. Eng. 64(3), 569–579 (2016)

    Article  Google Scholar 

  7. Zhan, B., Xiao, J., Cao, C., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)

    Article  Google Scholar 

  8. Xiang, L., Wang, Q., Nie, D., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Google Scholar 

  9. Tang, P., Yang, P., et al.: Unified medical image segmentation by learning from uncertainty in an end-to-end manner. Knowl.-Based Syst. 241, 108215 (2022)

    Article  Google Scholar 

  10. Shi, Y., Zu, C., Hong, M., et al.: ASMFS: adaptive-similarity-based multi-modality feature selection for classification of Alzheimer’s disease. Pattern Recogn. 126, 108566 (2022)

    Article  Google Scholar 

  11. Hu, L., Li, J., Peng, X., et al.: Semi-supervised NPC segmentation with uncertainty and attention guided consistency. Knowl.-Based Syst. 239, 108021 (2022)

    Article  Google Scholar 

  12. Wang, Y., Yu, B., Wang, L., et al.: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 174, 550–562 (2018)

    Article  Google Scholar 

  13. Li, H., Peng, X., Zeng, J., et al.: Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction. Knowl.-Based Syst. 241, 108324 (2022)

    Article  Google Scholar 

  14. Bi, L., Kim, J., Kumar, A., Feng, D., Fulham, M.: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). In: Cardoso, M.J. (ed.) CMMI/SWITCH/RAMBO -2017. LNCS, vol. 10555, pp. 43–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67564-0_5

    Chapter  Google Scholar 

  15. Wang, Y., Zhou, L., Yu, B., et al.: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans. Med. Imaging 38(6), 1328–1339 (2019)

    Article  Google Scholar 

  16. Lei, Y., Dong, X., Wang, T., et al.: Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys. Med. Biol. 64(21), 215017 (2019)

    Article  Google Scholar 

  17. Luo, Y., et al.: 3D transformer-GAN for high-quality PET reconstruction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 276–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_27

    Chapter  Google Scholar 

  18. Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: MI$^2$GAN: generative adversarial network for medical image domain adaptation using mutual information constraint. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 516–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_50

    Chapter  Google Scholar 

  19. Wang, K., Zhan, B., Zu, C., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)

    Article  Google Scholar 

  20. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  21. Xie, E., Ding, J., Wang, W., et al.: DetCo: unsupervised contrastive learning for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8392–8401. IEEE (2021)

    Google Scholar 

  22. He, K., Fan, H., Wu, Y., et al: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9726–9735. IEEE (2020)

    Google Scholar 

  23. Zeng, J., Xie, P.: Contrastive self-supervised learning for graph classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp. 10824–10832. AAAI (2021)

    Google Scholar 

  24. Chen, S., Bortsova, G., García-Uceda Juárez, A., van Tulder, G., de Bruijne, M.: Multi-task attention-based semi-supervised learning for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 457–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_51

    Chapter  Google Scholar 

  25. Isola, P., Zhu, J.Y., Zhou, T., et al.: Image-to-image translation with conditional adversarial networks. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Honolulu, pp. 1125–1134. IEEE (2017)

    Google Scholar 

  26. Nie, D., Trullo, R., Lian, J., et al.: Medical image synthesis with deep convolutional adversarial networks. IEEE Trans. Biomed. Eng. 65(12), 2720–2730 (2018)

    Article  Google Scholar 

  27. Yu, B., Zhou, L., Wang, L., et al.: Ea-gans: edge-aware generative adversarial networks for cross-modality mr image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019)

    Article  Google Scholar 

  28. Luo, Y., Zhou, L., Zhan, B., et al.: Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis. Med. Image Anal. 77, 102335 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (NFSC 62071314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinggang Shen or Yan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fei, Y. et al. (2022). Classification-Aided High-Quality PET Image Synthesis via Bidirectional Contrastive GAN with Shared Information Maximization. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics