Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ProCo: Prototype-Aware Contrastive Learning for Long-Tailed Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Medical image classification has been widely adopted in medical image analysis. However, due to the difficulty of collecting and labeling data in the medical area, medical image datasets are usually highly-imbalanced. To address this problem, previous works utilized class samples as prior for re-weighting or re-sampling but the feature representation is usually still not discriminative enough. In this paper, we adopt the contrastive learning to tackle the long-tailed medical imbalance problem. Specifically, we first propose the category prototype and adversarial proto-instance to generate representative contrastive pairs. Then, the prototype recalibration strategy is proposed to address the highly imbalanced data distribution. Finally, a unified proto-loss is designed to train our framework. The overall framework, namely as Prototype-aware Contrastive learning (ProCo), is unified as a single-stage pipeline in an end-to-end manner to alleviate the imbalanced problem in medical image classification, which is also a distinct progress than existing works as they follow the traditional two-stage pipeline. Extensive experiments on two highly-imbalanced medical image classification datasets demonstrate that our method outperforms the existing state-of-the-art methods by a large margin. Our source codes are available at https://github.com/skyz215/ProCo.

Z. Yang and J. Pan—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. APTOS 2019 blindness detection (2019). https://www.kaggle.com/c/aptos2019-blindness-detection/data

  2. Cai, T.T., Frankle, J., Schwab, D.J., Morcos, A.S.: Are all negatives created equal in contrastive instance discrimination? arXiv preprint arXiv:2010.06682 (2020)

  3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  4. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  5. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: ISBI, pp. 168–172 (2018)

    Google Scholar 

  6. Dai, Z., Cai, B., Lin, Y., Chen, J.: UniMoCo: unsupervised, semi-supervised and full-supervised visual representation learning. arXiv preprint arXiv:2103.10773 (2021)

  7. Dong, Q., Gong, S., Zhu, X.: Class rectification hard mining for imbalanced deep learning. In: ICCV, pp. 1851–1860 (2017)

    Google Scholar 

  8. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  9. Gong, L., Ma, K., Zheng, Y.: Distractor-aware neuron intrinsic learning for generic 2D medical image classifications. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 591–601. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_57

    Chapter  Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  13. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12341–12351, June 2021

    Google Scholar 

  14. Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: ICLR (2020)

    Google Scholar 

  15. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  16. Koziarski, M.: Radial-based undersampling for imbalanced data classification. Pattern Recogn. 102, 107262 (2020)

    Article  Google Scholar 

  17. Last, F., Douzas, G., Bacao, F.: Oversampling for imbalanced learning based on K-Means SMOTE. arXiv preprint arXiv:1711.00837 (2017)

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  19. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR, pp. 2537–2546 (2019)

    Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  21. Marrakchi, Y., Makansi, O., Brox, T.: Fighting class imbalance with contrastive learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 466–476. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_44

    Chapter  Google Scholar 

  22. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  23. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE TPAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  24. Robinson, J.D., Chuang, C., Sra, S., Jegelka, S.: Contrastive learning with hard negative samples. In: ICLR (2021)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)

    Google Scholar 

  27. Wang, T., et al.: The devil is in classification: a simple framework for long-tail instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 728–744. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_43

    Chapter  Google Scholar 

  28. Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv:2010.01809 (2020)

  29. Wei, C., Sohn, K., Mellina, C., Yuille, A., Yang, F.: CReST: a class-rebalancing self-training framework for imbalanced semi-supervised learning. In: CVPR, pp. 10857–10866 (2021)

    Google Scholar 

  30. Weng, Z., Ogut, M.G., Limonchik, S., Yeung, S.: Unsupervised discovery of the long-tail in instance segmentation using hierarchical self-supervision. In: CVPR, pp. 2603–2612 (2021)

    Google Scholar 

  31. Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. In: NeurIPS, vol. 33, pp. 19290–19301 (2020)

    Google Scholar 

  32. Zang, Y., Huang, C., Loy, C.C.: FASA: feature augmentation and sampling adaptation for long-tailed instance segmentation. In: ICCV, pp. 3457–3466 (2021)

    Google Scholar 

  33. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)

  34. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR, pp. 9719–9728 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Zhang or Cheng Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z. et al. (2022). ProCo: Prototype-Aware Contrastive Learning for Long-Tailed Medical Image Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics