Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Structures in Weight Matrices for Efficient Real-Time Drone Control with Neural Networks

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

Abstract

We consider the task of using a neural network for controlling a quadrotor drone to perform flight maneuvers. For that, the network must be evaluated with high frequency on the microcontroller of the drone. In order to maintain the evaluation frequency for larger networks, we search for structures in the weight matrices of the trained network. By exploiting structures in the weight matrices, the propagation of information through the network can be made more efficient. In this paper, we focus on four structure classes, namely low rank matrices, matrices of low displacement rank, sequentially semiseparable matrices and products of sparse matrices. We approximate the trained weight matrices with matrices from each structure class and analyze the flying capabilities of the approximated neural network controller. Our results show that there is structure in the weight matrices, which can be exploited to speed up the inference, while still being able to perform the flight maneuvers in the real world. The best results were obtained with products of sparse matrices, which could even outperform non-approximated networks with the same number of parameters in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.bitcraze.io/products/crazyflie-2-1/.

  2. 2.

    https://github.com/MatthiasKi/drone_structures.

  3. 3.

    https://pytorch.org/.

  4. 4.

    https://youtu.be/PVaTnagaUzs.

References

  1. Blalock, D., Ortiz, J.J.G., Frankle, J., Guttag, J.: What is the state of neural network pruning? arXiv preprint arXiv:2003.03033 (2020)

  2. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2013). https://doi.org/10.1007/s10107-013-0701-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  4. Dao, T., Gu, A., Eichhorn, M., Rudra, A., Ré, C.: Learning fast algorithms for linear transforms using butterfly factorizations. In: International Conference on Machine Learning, pp. 1517–1527. PMLR (2019)

    Google Scholar 

  5. Dao, T., et al.: Kaleidoscope: an efficient, learnable representation for all structured linear maps. arXiv preprint arXiv:2012.14966 (2020)

  6. De Sa, C., Cu, A., Puttagunta, R., Ré, C., Rudra, A.: A two-pronged progress in structured dense matrix vector multiplication. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1060–1079. SIAM (2018)

    Google Scholar 

  7. Dewilde, P., Van der Veen, A.J.: Time-Varying Systems and Computations. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-2817-0

    Book  MATH  Google Scholar 

  8. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  9. Gronauer, S., Kissel, M., Sacchetto, L., Korte, M., Diepold, K.: Using simulation optimization to improve zero-shot policy transfer of quadrotors. arXiv preprint arXiv:2201.01369 (2022)

  10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kung, S., Lin, D.: Optimal Hankel-norm model reductions: multivariable systems. IEEE Trans. Autom. Control 26(4), 832–852 (1981)

    Article  MathSciNet  Google Scholar 

  13. Le Magoarou, L., Gribonval, R.: Flexible multilayer sparse approximations of matrices and applications. IEEE J. Sel. Top. Signal Process. 10(4), 688–700 (2016)

    Article  Google Scholar 

  14. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. Adv. Neural Inf. Processing Syst. 2 (1989)

    Google Scholar 

  15. Lee, E.H., Miyashita, D., Chai, E., Murmann, B., Wong, S.S.: LogNet: energy-efficient neural networks using logarithmic computation. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5900–5904. IEEE (2017)

    Google Scholar 

  16. Pan, V.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer, Boston (2001). https://doi.org/10.1007/978-1-4612-0129-8

    Book  MATH  Google Scholar 

  17. Sindhwani, V., Sainath, T.N., Kumar, S.: Structured transforms for small-footprint deep learning. arXiv preprint arXiv:1510.01722 (2015)

  18. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  19. Thomas, A.T., Gu, A., Dao, T., Rudra, A., Ré, C.: Learning compressed transforms with low displacement rank. Adv. Neural. Inf. Process. Syst. 2018, 9052 (2018)

    Google Scholar 

  20. Zhao, L., Liao, S., Wang, Y., Li, Z., Tang, J., Yuan, B.: Theoretical properties for neural networks with weight matrices of low displacement rank. In: International Conference on Machine Learning, pp. 4082–4090. PMLR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kissel, M., Gronauer, S., Korte, M., Sacchetto, L., Diepold, K. (2022). Exploiting Structures in Weight Matrices for Efficient Real-Time Drone Control with Neural Networks. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics