Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SocialBERT – Transformers for Online Social Network Language Modelling

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2021)

Abstract

The ubiquity of the contemporary language understanding tasks gives relevance to the development of generalized, yet highly efficient models that utilize all knowledge, provided by the data source. In this work, we present SocialBERT - the first model that uses knowledge about the author’s position in the network during text analysis. We investigate possible models for learning social network information and successfully inject it into the baseline BERT model. The evaluation shows that embedding this information maintains a good generalization, with an increase in the quality of the probabilistic model for the given author up to 7.5%. The proposed model has been trained on the majority of groups for the chosen social network, and still able to work with previously unknown groups. The obtained model is available for download and use in applied tasks (https://github.com/karpovilia/SocialBert).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://vk.com/dev/rules.

  2. 2.

    https://github.com/bjornedstrom/python-sha3.

  3. 3.

    https://fbpca.readthedocs.io.

References

  1. Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in Twitter. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 502–518. Association for Computational Linguistics, Vancouver, Canada (2017)

    Google Scholar 

  2. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics, San Diego, California (2016)

    Google Scholar 

  3. Sorokin, A., et al.: MorphoRuEval-2017: an evaluation track for the automatic morphological analysis methods for Russian. Komp’yuternaya lingvistika i intellektual’nyye tekhnologii 1, 297–313 (2017)

    Google Scholar 

  4. Crystal, D.: Language and the Internet. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Pre-training of deep bidirectional transformers for language understanding, Bert (2019)

    Google Scholar 

  6. Nguyen, D.Q., Vu, T., Nguyen, A.T.: BERTweet: a pre-trained language model for English tweets. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 9–14. Association for Computational Linguistics (2020)

    Google Scholar 

  7. Marsden, P.V.: Homogeneity in confiding relations. Soc. Netw. 10(1), 57–76 (1988)

    Article  Google Scholar 

  8. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election: Divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD’05, pp. 36–43. Association for Computing Machinery, New York (2005)

    Google Scholar 

  9. Rieder, B.: Studying facebook via data extraction: the Netvizz application. In: Proceedings of the 5th Annual ACM Web Science Conference, WebSci’13, pp. 346–355. Association for Computing Machinery, New York(2013)

    Google Scholar 

  10. Keikha, M.M., Rahgozar, M., Asadpour, M.: Community aware random walk for network embedding. Knowl. Based Syst. 148, 47–54 (2018)

    Article  Google Scholar 

  11. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks (2016)

    Google Scholar 

  13. Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-order proximity preserved network embedding, pp. 2778–2786. Association for Computing Machinery, New York (2018)

    Google Scholar 

  14. Zhang, J., Zhang, H., Xia, C., Sun, L.: Graph-bert: only attention is needed for learning graph representations (2020)

    Google Scholar 

  15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2018)

    Google Scholar 

  16. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks (2020)

    Google Scholar 

  17. Han, X., Eisenstein, J.: Unsupervised domain adaptation of contextualized embeddings for sequence labeling (2019)

    Google Scholar 

  18. Yogatama, D., et al.: Learning and evaluating general linguistic intelligence (2019)

    Google Scholar 

  19. Mghabbar, I., Ratnamogan, P.: Building a multi-domain neural machine translation model using knowledge distillation (2020)

    Google Scholar 

  20. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  21. Lu, Z., Du, P., Nie, J.-Y.: VGCN-BERT: augmenting BERT with graph embedding for text classification. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 369–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_25

    Chapter  Google Scholar 

  22. Lauscher, A., Majewska, O., Ribeiro, L.F., Gurevych, I., Rozanov, N., Glavaš, G.: Common sense or world knowledge? investigating adapter-based knowledge injection into pretrained transformers. In: Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pp. 43–49. Association for Computational Linguistics (2020)

    Google Scholar 

  23. Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for Russian language (2019)

    Google Scholar 

Download references

Acknowledgements

The article was prepared within the framework of the HSE University Basic Research Program and through computational resources of HPC facilities provided by NRU HSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Karpov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karpov, I., Kartashev, N. (2022). SocialBERT – Transformers for Online Social Network Language Modelling. In: Burnaev, E., et al. Analysis of Images, Social Networks and Texts. AIST 2021. Lecture Notes in Computer Science, vol 13217. Springer, Cham. https://doi.org/10.1007/978-3-031-16500-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16500-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16499-6

  • Online ISBN: 978-3-031-16500-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics