Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation Methods

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2022)

Abstract

The wide variety of in-distribution and out-of-distribution data in medical imaging makes universal anomaly detection a challenging task. Recently a number of self-supervised methods have been developed that train end-to-end models on healthy data augmented with synthetic anomalies. However, it is difficult to compare these methods as it is not clear whether gains in performance are from the task itself or the training pipeline around it. It is also difficult to assess whether a task generalises well for universal anomaly detection, as they are often only tested on a limited range of anomalies. To assist with this we have developed nnOOD, a framework that adapts nnU-Net to allow for comparison of self-supervised anomaly localisation methods. By isolating the synthetic, self-supervised task from the rest of the training process we perform a more faithful comparison of the tasks, whilst also making the workflow for evaluating over a given dataset quick and easy. Using this we have implemented the current state-of-the-art tasks and evaluated them on a challenging X-ray dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nnDetection: a self-configuring method for medical object detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_51

  2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021) https://doi.org/10.1016/j.media.2020.101952

  3. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Scale-space autoencoders for unsupervised anomaly segmentation in brain MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_54

  4. Bello-Salau, H., Onumanyi, A.J., Salawudeen, A.T., Mu’azu, M.B., Oyinbo, A.M.: An examination of different vision based approaches for road anomaly detection. In: 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf), pp. 1–6 (2019). https://doi.org/10.1109/NigeriaComputConf45974.2019.8949646

  5. Berger, C., Paschali, M., Glocker, B., Kamnitsas, K.: Confidence-based out-of-distribution detection: a comparative study and analysis. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 122–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_12

  6. Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTEC anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vis. 129(4), 1038–1059 (2021). https://doi.org/10.1007/s11263-020-01400-4

    Article  Google Scholar 

  7. Chan, R., et al.: Segmentmeifyoucan: A benchmark for anomaly segmentation. arXiv preprint arXiv:2104.14812 (2021)

  8. Drew, T., Võ, M.L.H., Wolfe, J.M.: The invisible gorilla strikes again: sustained inattentional blindness in expert observers. Psychol. Sci. 24(9), 1848–1853 (2013)

    Article  Google Scholar 

  9. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  10. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 98–107 (2022)

    Google Scholar 

  11. Han, C., et al.: MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinf. 22(2), 1–20 (2021)

    Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Method. 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  13. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)

    Google Scholar 

  14. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  15. Marimont, S.N., Tarroni, G.: Anomaly detection through latent space restoration using vector quantized variational autoencoders. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1764–1767 (2021). https://doi.org/10.1109/ISBI48211.2021.9433778

  16. Meissen, F., Wiestler, B., Kaissis, G., Rueckert, D.: On the pitfalls of using the residual as anomaly score. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=ZsoHLeupa1D

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  18. Pinto, A., et al.: Errors in imaging patients in the emergency setting. Br. J. Radiol. 89, 20150914 (2016). https://doi.org/10.1259/bjr.20150914

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  20. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019). https://doi.org/10.1016/j.media.2019.01.010

  21. Schlüter, H.M., Tan, J., Hou, B., Kainz, B.: Self-supervised out-of-distribution detection and localization with natural synthetic anomalies (NSA). arXiv preprint arXiv:2109.15222 (2021)

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  23. Song, J., Kong, K., Park, Y.I., Kim, S.G., Kang, S.J.: Anomaly segmentation network using self-supervised learning. In: AAAI 2022 Workshop on AI for Design and Manufacturing (ADAM) (2021)

    Google Scholar 

  24. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation. arXiv preprint arXiv:2011.04197 (2020)

  25. Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., Kainz, B.: Detecting outliers with poisson image interpolation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 581–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_56

  26. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471 (2017)

    Google Scholar 

  27. Yu, J., et al.: Fastflow: unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021)

  28. Zhang, O., Delbrouck, J.-B., Rubin, D.L.: Out of distribution detection for medical images. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 102–111. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_10

  29. Zimmerer, D., et al.: Medical out-of-distribution analysis challenge 2021 (2021). https://doi.org/10.5281/zenodo.4573948

Download references

Acknowledgements

This work was supported by the UKRI London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Baugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baugh, M., Tan, J., Vlontzos, A., Müller, J.P., Kainz, B. (2022). nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation Methods. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2022. Lecture Notes in Computer Science, vol 13563. Springer, Cham. https://doi.org/10.1007/978-3-031-16749-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16749-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16748-5

  • Online ISBN: 978-3-031-16749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics