Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification

  • Conference paper
  • First Online:
Resource-Efficient Medical Image Analysis (REMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13543))

Included in the following conference series:

  • 453 Accesses

Abstract

Due to the domain shift problem, the deep learning models trained on one domain often fail to generalize well on others. Researchers formulated such a realistic-yet-challenging scenario as a new research line, termed single domain generalization (single-DG), which aims to generalize a model trained on single source domain to multiple target domains. The existing single-DG approaches tried to address the problem by generating diverse samples using extra trainable network modules. However, due to the limited amount of medical data, the extra network parameters are difficult to train. The generated samples are often failed to achieve satisfactory effect for improving model generalization. In this paper, we propose a simple-yet-effective Fourier-based approach, which augments data via spontaneous Amplitude SPECTrum diverSification (ASPECTS), for single domain generalization. Concretely, the proposed approach first converts the image into frequency domain using the Fourier transform, and then spontaneously generates diverse samples by editing the amplitude spectrum using a pool of randomization operations. The proposed approach is established upon the assumption that the high-level semantic information (domain-invariant) is embedded in the phase spectrum of images after Fourier transform, while the amplitude spectrum mainly contains the domain-variant information. We evaluate the proposed ASPECTS approach on both publicly available and private multi-domain datasets. Compared to the existing single-DG approaches, our method is much easier to implement (i.e., without training of extra network modules) and yields the superior improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the hyperparameter \(\beta \) varies in the interval (0, 1) during the network training to increase the diversity of adversarial samples.

  2. 2.

    We notice that there are other ways to fuse the two spectra, e.g., pixel-wise multiplication (\(\mathcal {A}_c^r \times \mathcal {A}_c^s\)) or series concatenation (\(\mathcal {T}_s(\mathcal {A}_c^r)\)). However, these fusion approaches are observed to under-randomize the amplitude spectrum and degrade the diversity of adversarial samples. Hence, we adopt pixel-wise summation in this study.

  3. 3.

    Note that the same data augmentation operations are adopted to train benchmarking algorithms and our ASPECTS.

  4. 4.

    Consistent to [14], DG approaches can access multiple source domains for training.

  5. 5.

    Note that L2D needs to integrate an extra style-complement module into the framework for sample diversification.

References

  1. Aubreville, M., Bertram, C.A., Donovan, T.A., Marzahl, C., Maier, A., Klopfleisch, R.: A completely annotated whole slide image dataset of canine breast cancer to aid human breast cancer research. Sci. Data 7(1), 1–10 (2020)

    Article  Google Scholar 

  2. Bian, C., et al.: Uncertainty-aware domain alignment for anatomical structure segmentation. Med. Image Anal. 64, 101732 (2020)

    Article  Google Scholar 

  3. Du, Y., et al.: Learning to learn with variational information bottleneck for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 200–216. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_12

    Chapter  Google Scholar 

  4. Hansen, B.C., Hess, R.F.: Structural sparseness and spatial phase alignment in natural scenes. J. Opt. Soc. Am. A 24(7), 1873–1885 (2007)

    Article  Google Scholar 

  5. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2009)

  6. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8

    Chapter  Google Scholar 

  7. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  8. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  9. Oppenheim, A., Lim, J.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  10. Piotrowski, L.N., Campbell, F.W.: A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase. Perception 11(3), 337–346 (1982)

    Article  Google Scholar 

  11. Qiao, F., Zhao, L., Peng, X.: Learning to learn single domain generalization. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  12. Simon, C., Koniusz, P., Nock, R., Harandi, M.: Adaptive subspaces for few-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  13. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  14. Wang, Z., Luo, Y., Qiu, R., Huang, Z., Baktashmotlagh, M.: Learning to diversify for single domain generalization. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  15. Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: MI\(^2\)GAN: generative adversarial network for medical image domain adaptation using mutual information constraint. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 516–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_50

    Chapter  Google Scholar 

  16. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A Fourier-based framework for domain generalization. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  17. Xu, X., Zhou, X., Venkatesan, R., Swaminathan, G., Majumder, O.: d-SNE: domain adaptation using stochastic neighborhood embedding. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  18. Xue, Y., Feng, S., Zhang, Y., Zhang, X., Wang, Y.: Dual-task self-supervision for cross-modality domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 408–417. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_40

    Chapter  Google Scholar 

  19. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  20. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2017)

  21. Zhang, T., et al.: Noise adaptation generative adversarial network for medical image analysis. IEEE Trans. Med. Imaging 39(4), 1149–1159 (2020)

    Article  Google Scholar 

  22. Zhao, L., Liu, T., Peng, X., Metaxas, D.: Maximum-entropy adversarial data augmentation for improved generalization and robustness. Adv. Neural. Inf. Process. Syst. 33, 14435–14447 (2020)

    Google Scholar 

  23. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., He, N., Huang, Y. (2022). Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds) Resource-Efficient Medical Image Analysis. REMIA 2022. Lecture Notes in Computer Science, vol 13543. Springer, Cham. https://doi.org/10.1007/978-3-031-16876-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16876-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16875-8

  • Online ISBN: 978-3-031-16876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics