Abstract
Recent studies have shown that joint denoising and super-resolution (JDSR) approach is capable of producing high-quality medical images. The training process requires noise-free ground truth or multiple noisy captures. However, these extra training datasets are often unavailable in fluorescence microscopy. This paper presents a new weakly-supervised method, in which different from other approaches, the JDSR model is trained with a single noisy capture alone. We further introduce a novel training framework to approximate the supervised JDSR approach. In this paper, we present both theoretical explanation and experimental analysis for our method validation. The proposed method can achieve an approximation accuracy of \(98.11\%\) compared to the supervised approach. The source code is available at https://github.com/colinsctsang/weakly_supervised_JDSR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2019)
Belthangady, C., Royer, L.A.: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16(12), 1215–1225 (2019)
Chakrova, N., Canton, A.S., Danelon, C., Stallinga, S., Rieger, B.: Adaptive illumination reduces photo-bleaching in structured illumination microscopy. Biomed. Opt. Express 7(10), 4263–4274 (2016)
Choi, J.H., Zhang, H., Kim, J.H., Hsieh, C.J., Lee, J.S.: Evaluating robustness of deep image super-resolution against adversarial attacks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 303–311 (2019)
El Helou, M., Süsstrunk, S.: Blind universal Bayesian image denoising with gaussian noise level learning. IEEE Trans. Image Process. 29, 4885–4897 (2020)
Goncharova, A.S., Honigmann, A., Jug, F., Krull, A.: Improving blind spot denoising for microscopy. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 380–393. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_25
Gustafsson, M.G.: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)
Huang, T., Li, S., Jia, X., Lu, H., Liu, J.: Neighbor2Neighbor: self-supervised denoising from single noisy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14781–14790 (2021)
Khademi, W., Rao, S., Minnerath, C., Hagen, G., Ventura, J.: Self-supervised poisson-gaussian denoising. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2131–2139 (2021)
Krull, A., Buchholz, T., Jug, F.: Noise2Void: learning denoising from single noisy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)
Krull, A., Vičar, T., Prakash, M., Lalit, M., Jug, F.: Probabilistic Noise2Void: unsupervised content-aware denoising. Front. Comput. Sci. 2, 5 (2020)
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)
Laine, S., Karras, T., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: International Conference on Machine Learning, pp. 2965–2974 (2018)
Li, Y., Sixou, B., Peyrin, F.: A review of the deep learning methods for medical images super resolution problems. IRBM 42, 120–133 (2021)
Peng, C., Zhou, S.K., Chellappa, R.: DA-VSR: domain adaptable volumetric super-resolution for medical images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 75–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_8
Prakash, M., Lalit, M., Tomancak, P., Krul, A., Jug, F.: Fully unsupervised probabilistic Noise2Void. In: IEEE 17th International Symposium on Biomedical Imaging, pp. 154–158 (2020)
Qiu, B., et al.: N2NSR-OCT: Simultaneous denoising and super-resolution in optical coherence tomography images using semisupervised deep learning. J. Biophotonics 14(1), e202000282 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)
Sui, Y., Afacan, O., Gholipour, A., Warfield, S.K.: MRI super-resolution through generative degradation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 430–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_42
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 14(4), 600–612 (2004)
Wang, Z., Chen, J., Hoi, S.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3365–3387 (2020)
Weigert, M., et al.: Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15(12), 1090–1097 (2018)
Wu, Q., et al.: IREM: high-resolution magnetic resonance image reconstruction via implicit neural representation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 65–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_7
Xing, W., Egiazarian, K.: End-to-end learning for joint image demosaicing, denoising and super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3507–3516 (2021)
Xu, J., Adalsteinsson, E.: Deformed2Self: self-supervised denoising for dynamic medical imaging. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 25–35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_3
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)
Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S.: W2S: microscopy data with joint denoising and super-resolution for widefield to SIM mapping. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 474–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_31
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tsang, C.S.C., Mok, T.C.W., Chung, A.C.S. (2022). Joint Denoising and Super-Resolution for Fluorescence Microscopy Using Weakly-Supervised Deep Learning. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-16961-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16960-1
Online ISBN: 978-3-031-16961-8
eBook Packages: Computer ScienceComputer Science (R0)