Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bi-directional Synthesis of Pre- and Post-contrast MRI via Guided Feature Disentanglement

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2022)

Abstract

Magnetic resonance imaging (MRI) with gadolinium contrast is widely used for tissue enhancement and better identification of active lesions and tumors. Recent studies have shown that gadolinium deposition can accumulate in tissues including the brain, which raises safety concerns. Prior works have tried to synthesize post-contrast T1-weighted MRIs from pre-contrast MRIs to avoid the use of gadolinium. However, contrast and image representations are often entangled during the synthesis process, resulting in synthetic post-contrast MRIs with undesirable contrast enhancements. Moreover, the synthesis of pre-contrast MRIs from post-contrast MRIs which can be useful for volumetric analysis is rarely investigated in the literature. To tackle pre- and post- contrast MRI synthesis, we propose a BI-directional Contrast Enhancement Prediction and Synthesis (BICEPS) network that enables disentanglement of contrast and image representations via a bi-directional image-to-image translation (I2I) model. Our proposed model can perform both pre-to-post and post-to-pre contrast synthesis, and provides an interpretable synthesis process by predicting contrast enhancement maps from the learned contrast embedding. Extensive experiments on a multiple sclerosis dataset demonstrate the feasibility of applying our bidirectional synthesis and show that BICEPS outperforms current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bône, A., et al.: Contrast-enhanced brain mri synthesis with deep learning: key input modalities and asymptotic performance. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1159–1163. IEEE (2021)

    Google Scholar 

  2. Calabrese, E., Rudie, J.D., Rauschecker, A.M., Villanueva-Meyer, J.E., Cha, S.: Feasibility of simulated postcontrast MRI of glioblastomas and lower-grade gliomas by using three-dimensional fully convolutional neural networks. Radiol. Artif. Intell. 3(5), e200276 (2021)

    Article  Google Scholar 

  3. Choi, J.W., Moon, W.J.: Gadolinium deposition in the brain: current updates. Korean J. Radiol. 20(1), 134–147 (2019)

    Article  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  6. Gong, E., Pauly, J.M., Wintermark, M., Zaharchuk, G.: Deep learning enables reduced gadolinium dose for contrast-enhanced brain mri. J. Magn. Reson. Imaging 48(2), 330–340 (2018)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision- and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huo, Y., et al.: 3d whole brain segmentation using spatially localized atlas network tiles. Neuroimage 194, 105–119 (2019)

    Article  Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  10. Kleesiek, J., et al.: Can virtual contrast enhancement in brain MRI replace gadolinium?: a feasibility study. Invest. Radiol. 54(10), 653–660 (2019)

    Article  Google Scholar 

  11. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV, pp. 2794–2802 (2017)

    Google Scholar 

  12. Matsumura, T., et al.: Safety of gadopentetate dimeglumine after 120 million administrations over 25 years of clinical use. Magn. Reson. Med. Sci. 12, 297–304 (2013)

    Google Scholar 

  13. McFarland, H.F., et al.: Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann. Neurol. 32(6), 758–766 (1992)

    Article  Google Scholar 

  14. Narayana, P.A., Coronado, I., Sujit, S.J., Wolinsky, J.S., Lublin, F.D., Gabr, R.E.: Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 294(2), 398–404 (2020)

    Article  Google Scholar 

  15. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  16. Preetha, C.J., et al.: Deep-learning-based synthesis of post-contrast t1-weighted mri for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit. Health 3(12), e784–e794 (2021)

    Article  Google Scholar 

  17. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  18. Reinhold, J.C., Dewey, B.E., Carass, A., Prince, J.L.: Evaluating the impact of intensity normalization on MR image synthesis. In: Medical Imaging 2019: Image Processing. vol. 10949, pp. 890–898. SPIE (2019)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Semelka, R.C., Ramalho, M., AlObaidy, M., Ramalho, J.: Gadolinium in humans: a family of disorders. Am. J. Roentgenol. 207(2), 229–233 (2016)

    Article  Google Scholar 

  21. Simona, B., et al.: Homogenization of brain Mri from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with u-net derived models. In: Medical Imaging 2022: Image Processing. vol. 12032, pp. 576–582. SPIE (2022)

    Google Scholar 

  22. Tuncbilek, N., Karakas, H.M., Okten, O.O.: Dynamic contrast enhanced mri in the differential diagnosis of soft tissue tumors. Eur. J. Radiol. 53(3), 500–505 (2005)

    Article  Google Scholar 

  23. Tustison, N.J., et al.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  24. Wallis, J.W., Miller, T.R., Lerner, C.A., Kleerup, E.C.: Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8(4), 230–297 (1989)

    Article  Google Scholar 

  25. Yankeelov, T.E., Gore, J.C.: Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Current Medical Imaging 3(2), 91–107 (2007)

    Article  Google Scholar 

  26. Zhao, C., Dewey, B.E., Pham, D.L., Calabresi, P.A., Reich, D.S., Prince, J.L.: Smore: a self-supervised anti-aliasing and super-resolution algorithm for mri using deep learning. IEEE Trans. Med. Imaging 40(3), 805–817 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was in part supported by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, Y. et al. (2022). Bi-directional Synthesis of Pre- and Post-contrast MRI via Guided Feature Disentanglement. In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2022. Lecture Notes in Computer Science, vol 13570. Springer, Cham. https://doi.org/10.1007/978-3-031-16980-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16980-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16979-3

  • Online ISBN: 978-3-031-16980-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics