Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Computer-Aided Histopathologic Segmentation for Nasopharyngeal Carcinoma Using Transformer Framework

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13574))

Abstract

The segmentation of the histopathological whole slide images (WSIs) of nasopharyngeal carcinoma (NPC) plays an essential role in the diagnosis, grading and even prognosis analysis. Due to the huge size of pathological images and the fact that NPC often occurs in the middle and advanced stages, it is still challenging to generate accurate segmentation results automatically. Although many convolutional neural network (CNN) methods had achieved good segmentation performance in many types of images, however, the encoding of global context is insufficient, and it is prone to misjudge the adjacent regions. Meanwhile, the area of NPC pathological image is dense, which means that the image with a tiny size may fall into one category. To overcome this limitation, we apply a transformer-based framework on NPC pathological images that is designed for extracting and encoding global context information. To validate and compare the transformer framework with various CNN-based methods, experiments have been conducted on the clinical dataset collection of NPC. The transformer framework outperformed the state-of-the-art pure CNN-based methods in AUC and recall. Especially, our framework achieved 2.5%–3.5% higher DSC in 5X images and 2.1%–3.2% higher DSC in 10X images than other methods.

S. Diao and L. Tang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson, L.D.: Update on nasopharyngeal carcinoma. Head Neck Pathol. 1, 81–86 (2007)

    Article  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68, 394–424 (2018)

    Google Scholar 

  3. Lee, H.M., Okuda, K.S., González, F.E., Patel, V.: Current perspectives on nasopharyngeal carcinoma. In: Rhim, J.S., Dritschilo, A., Kremer, R. (eds.) Human Cell Transformation. AEMB, vol. 1164, pp. 11–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22254-3_2

    Chapter  Google Scholar 

  4. Liu, Y., et al.: Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat. Commun. 12, 1–18 (2021)

    Google Scholar 

  5. Wei, W.I., Sham, J.S.: Nasopharyngeal carcinoma. Lancet 365, 2041–2054 (2005)

    Article  Google Scholar 

  6. Diao, S., et al.: Computer-aided pathologic diagnosis of nasopharyngeal carcinoma based on deep learning. Am. J. Pathol. 190, 1691–1700 (2020)

    Article  Google Scholar 

  7. Wei, K.R., Xu, Y., Liu, J., Zhang, W.-J., Liang, Z.-H.: Histopathological classification of nasopharyngeal carcinoma. Asian Pac. J. Cancer Prev. 12, 1141–1147 (2011)

    Google Scholar 

  8. Feng, R., Liu, X., Chen, J., Chen, D.Z., Gao, H., Wu, J.: A deep learning approach for colonoscopy pathology WSI analysis: accurate segmentation and classification. IEEE J. Biomed. Health Inform. 25, 3700–3708 (2021)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Sun, M., Zhang, G., Dang, H., Qi, X., Zhou, X., Chang, Q.: Accurate gastric cancer segmentation in digital pathology images using deformable convolution and multi-scale embedding networks. IEEE Access 7, 75530–75541 (2019)

    Article  Google Scholar 

  11. Diao, S., et al.: Weakly supervised framework for cancer region detection of hepatocellular carcinoma in whole-slide pathologic images based on multiscale attention convolutional neural network. Am. J. Pathol. 192, 553–563 (2022)

    Article  Google Scholar 

  12. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180 (2018)

  13. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  14. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  16. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  17. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  18. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural Inf. Process. Syst. 34, 2136–2147 (2021)

    Google Scholar 

  19. Nguyen, C., Asad, Z., Deng, R., Huo, Y.: Evaluating transformer-based semantic segmentation networks for pathological image segmentation. In: Medical Imaging 2022: Image Processing, pp. 942–947. SPIE (2022)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  21. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  22. Kirillov, A., He, K., Girshick, R., Dollár, P.: A unified architecture for instance and semantic segmentation (2017)

    Google Scholar 

  23. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61901463 and U20A20373), and the Shenzhen Science and Technology Program of China grant JCYJ20200109115420720, and the Youth Innovation Promotion Association CAS (2022365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diao, S. et al. (2022). Automatic Computer-Aided Histopathologic Segmentation for Nasopharyngeal Carcinoma Using Transformer Framework. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17266-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17265-6

  • Online ISBN: 978-3-031-17266-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics