Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

International Workshop on Continual Semi-Supervised Learning: Introduction, Benchmarks and Baselines

  • Conference paper
  • First Online:
Continual Semi-Supervised Learning (CSSL 2021)

Abstract

The aim of this paper is to formalise a new continual semi-supervised learning (CSSL) paradigm, proposed to the attention of the machine learning community via the IJCAI 2021 International Workshop on Continual Semi-Supervised Learning (CSSL@IJCAI) (https://sites.google.com/view/sscl-workshop-ijcai-2021/), with the aim of raising the field’s awareness about this problem and mobilising its effort in this direction. After a formal definition of continual semi-supervised learning and the appropriate training and testing protocols, the paper introduces two new benchmarks specifically designed to assess CSSL on two important computer vision tasks: activity recognition and crowd counting. We describe the Continual Activity Recognition (CAR) and Continual Crowd Counting (CCC) challenges built upon those benchmarks, the baseline models proposed for the challenges, and describe a simple CSSL baseline which consists in applying batch self-training in temporal sessions, for a limited number of rounds. The results show that learning from unlabelled data streams is extremely challenging, and stimulate the search for methods that can encode the dynamics of the data stream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://actev.nist.gov/.

  2. 2.

    https://gitlab.kitware.com/meva/meva-data-repo/tree/master/annotation/DIVA-phase-2/MEVA/.

  3. 3.

    https://github.com/salmank255/IJCAI-2021-Continual-Activity-Recognition-Challenge.

  4. 4.

    https://www.kaggle.com/c/counting-people-in-a-mall.

  5. 5.

    http://www.svcl.ucsd.edu/projects/peoplecnt/.

  6. 6.

    https://drive.google.com/drive/folders/19c2X529VTNjl3YL1EYweBg60G70G2D-w.

  7. 7.

    https://github.com/svishwa/crowdcount-mcnn.

  8. 8.

    https://github.com/Ajmal70/IJCAI_2021_Continual_Crowd_Counting_Challenge.

  9. 9.

    https://github.com/lukemelas/EfficientNet-PyTorch.

  10. 10.

    https://github.com/svishwa/crowdcount-mcnn.

References

  1. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. CoRR abs/1903.08671 (2019)

    Google Scholar 

  2. Bitarafan, A., Baghshah, M.S., Gheisari, M.: Incremental evolving domain adaptation. IEEE Trans. Knowl. Data Eng. 28(8), 2128–2141 (2016)

    Article  Google Scholar 

  3. Boominathan, L., Kruthiventi, S.S., Babu, R.V.: CrowdNet: a deep convolutional network for dense crowd counting. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 640–644 (2016)

    Google Scholar 

  4. Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: counting people without people models or tracking. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2008)

    Google Scholar 

  5. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 627–636 (2019)

    Google Scholar 

  6. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 627–636 (2019)

    Google Scholar 

  7. Chen, K., Loy, C.C., Gong, S., Xiang, T.: Feature mining for localised crowd counting. In: BMVC, vol. 1, p. 3 (2012)

    Google Scholar 

  8. Chen, Y., Li, W., Sakaridis, C., Dai, D., Gool, L.V.: Domain adaptive faster R-CNN for object detection in the wild. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  9. Corona, K., Osterdahl, K., Collins, R., Hoogs, A.: MEVA: a large-scale multiview, multimodal video dataset for activity detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1060–1068 (2021)

    Google Scholar 

  10. Fang, Y., Zhan, B., Cai, W., Gao, S., Hu, B.: Locality-constrained spatial transformer network for video crowd counting. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 814–819 (2019)

    Google Scholar 

  11. Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. ArXiv abs/1805.09733 (2018)

    Google Scholar 

  12. Hossain, M.A., Cannons, K., Jang, D., Cuzzolin, F., Xu, Z.: Video-based crowd counting using a multi-scale optical flow pyramid network. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  13. Jiang, X., et al.: Crowd counting and density estimation by trellis encoder-decoder networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6133–6142 (2019)

    Google Scholar 

  14. Lange, M.D., et al.: Continual learning: a comparative study on how to defy forgetting in classification tasks. CoRR abs/1909.08383 (2019). https://arxiv.org/abs/1909.08383

  15. Liu, W., Salzmann, M., Fua, P.: Estimating people flows to better count them in crowded scenes. CoRR abs/1911.10782 (2019). https://arxiv.org/abs/1911.10782

  16. Lomonaco, V., Maltoni, D.: CORe50: a new dataset and benchmark for continuous object recognition. In: Conference on Robot Learning, pp. 17–26. PMLR (2017)

    Google Scholar 

  17. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)

    Google Scholar 

  18. Prabhu, A., Torr, P.H.S., Dokania, P.K.: GDumb: a simple approach that questions our progress in continual learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 524–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_31

    Chapter  Google Scholar 

  19. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models (2005)

    Google Scholar 

  20. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  21. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42(2), 245–284 (2013). https://doi.org/10.1007/s10115-013-0706-y

    Article  Google Scholar 

  22. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2962–2971 (2017)

    Google Scholar 

  23. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 (2019)

  24. Xiong, F., Shi, X., Yeung, D.Y.: Spatiotemporal modeling for crowd counting in videos. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5161–5169 (2017). https://doi.org/10.1109/ICCV.2017.551

  25. Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.: From open set to closed set: counting objects by spatial divide-and-conquer. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8362–8371 (2019)

    Google Scholar 

  26. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 589–597 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajmal Shahbaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahbaz, A. et al. (2022). International Workshop on Continual Semi-Supervised Learning: Introduction, Benchmarks and Baselines. In: Cuzzolin, F., Cannons, K., Lomonaco, V. (eds) Continual Semi-Supervised Learning. CSSL 2021. Lecture Notes in Computer Science(), vol 13418. Springer, Cham. https://doi.org/10.1007/978-3-031-17587-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17587-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17586-2

  • Online ISBN: 978-3-031-17587-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics