Abstract
We propose two methods to compact the used search tree during the graph edit distance (GED) computation. The first maps the node information and encodes the different edit operations by numbers and the needed remaining vertices and edges by BitSets. The second represents the tree succinctly by bit-vectors. The proposed methods require 24 to 250 times less memory than traditional versions without negatively influencing the running time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Download from https://gdc2016.greyc.fr/#ged.
- 2.
These settings were used in the competition https://gdc2016.greyc.fr/#ged.
- 3.
MemoryMeter: https://github.com/jbellis/jamm.
References
Abu-Aisheh, Z., Raveaux, R., Ramel, J.Y., Martineau, P.: An exact graph edit distance algorithm for solving pattern recognition problems. In: 4th International Conference on Pattern Recognition Applications and Methods 2015 (2015)
Blumenthal, D.B., Gamper, J.: Correcting and speeding-up bounds for non-uniform graph edit distance. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 131–134. IEEE (2017)
Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1(4), 245–253 (1983)
Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn. 44(5), 1057–1067 (2011)
Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719 (2016)
Dabah, A., Chegrane, I., Yahiaoui, S.: Efficient approximate approach for graph edit distance problem. Pattern Recognit. Lett. 151, 310–316 (2021)
Gouda, K., Hassaan, M.: Csi_ged: an efficient approach for graph edit similarity computation. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 265–276. IEEE (2016)
Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_17
Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)
Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit distance computation with a bipartite heuristic. In: MLG (2007)
Riesen, K., Fischer, A., Bunke, H.: Computing upper and lower bounds of graph edit distance in cubic time. In: El Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR 2014. LNCS (LNAI), vol. 8774, pp. 129–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11656-3_12
Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern Recogn. 48(2), 291–301 (2015)
Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chegrane, I., Hocine, I., Yahiaoui, S., Bendjoudi, A., Nouali-Taboudjemat, N. (2022). Graph Edit Distance Compacted Search Tree. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Computer Science, vol 13590. Springer, Cham. https://doi.org/10.1007/978-3-031-17849-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-17849-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17848-1
Online ISBN: 978-3-031-17849-8
eBook Packages: Computer ScienceComputer Science (R0)