Abstract
Payment channels effectively move the transaction load off-chain thereby successfully addressing the inherent scalability problem most cryptocurrencies face. A major drawback of payment channels is the need to “top up” funds on-chain when a channel is depleted. Rebalancing was proposed to alleviate this issue, where parties with depleting channels move their funds along a cycle to replenish their channels off-chain. Protocols for rebalancing so far either introduce local solutions or compromise privacy.
In this work, we present an opt-in rebalancing protocol that is both private and globally optimal, meaning our protocol maximizes the total amount of rebalanced funds. We study rebalancing from the framework of linear programming. To obtain full privacy guarantees, we leverage multi-party computation in solving the linear program, which is executed by selected participants to maintain efficiency. Finally, we efficiently decompose the rebalancing solution into incentive-compatible cycles which conserve user balances when executed atomically.
Supported by the Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023.
Supported partially by the Austrian Science Fund (FWF) project “Design Framework for Self-Driving Networks” (ADVISE), I 4800-N, 2020–2023 and Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023.
Supported partially by ERC Starting Grant QIP–805241, the Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023, and by Harmony through the Research DAO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rebalance plugin. https://github.com/lightningd/plugins/tree/master/rebalance
Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: PODC (2006). https://doi.org/10.1145/1146381.1146393
Ahuja, R., Magnanti, T., Orlin, J.: Network flows - theory, algorithms and applications (1993)
Ahuja, R., Goldberg, A., Orlin, J., Tarjan, R.: Finding minimum-cost flows by double scaling. Math. Program. 53, 243–266 (1992). https://doi.org/10.1007/BF01585705
Aly, A.: Network flow problems with secure multiparty computation (2015)
Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick: asynchronous incentive-compatible payment channels. In: FC (2021). https://fc21.ifca.ai/papers/168.pdf
Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: incentivizing watchtowers for bitcoin. In: FC (2020). https://doi.org/10.1007/978-3-030-51280-4_19
Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_20
Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3_9
Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_37
Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_15
Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Stabilization, Safety, and Security of Distributed Systems (2015). https://doi.org/10.1007/978-3-319-21741-3_1
van Engelshoven, Y., Roos, S.: The merchant: avoiding payment channel depletion through incentives. CoRR abs/2012.10280 (2020). https://arxiv.org/abs/2012.10280
Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Eurocrypt (2015). https://doi.org/10.1007/978-3-662-46803-6_10
Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP (2017). https://doi.org/10.1145/3132747.3132757
Joseph Poon, T.D.: The bitcoin lightning network: Scalable off-chain instant payments. Technical report. https://lightning.network/lightning-network-paper.pdf
Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: CCS (2017). https://doi.org/10.1145/3133956.3134033
Li, P., Miyazaki, T., Zhou, W.: Secure balance planning of off-blockchain payment channel networks. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 1728–1737 (2020). https://doi.org/10.1109/INFOCOM41043.2020.9155375
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: enforcing security and privacy in decentralized credit networks. In: NDSS (2017). https://doi.org/10.14722/ndss.2017.23448
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. In: NDSS (2019). https://doi.org/10.14722/ndss.2019.23330
Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels: Payment networks that go faster than lightning. In: FC (2019). https://doi.org/10.1007/978-3-030-32101-7_30
Orlin, J.: A polynomial time primal network simplex algorithm for minimum cost flows. Math. Prog. 78, 109–129 (1996). https://doi.org/10.1007/BF02614365
Pickhardt, R., Nowostawski, M.: Imbalance measure and proactive channel rebalancing algorithm for the lightning network. In: IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2020, Toronto, ON, Canada, 2–6 May, 2020, pp. 1–5. IEEE (2020). https://doi.org/10.1109/ICBC48266.2020.9169456
Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2015). https://lightning.network/lightning-network-paper.pdf
Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an approach to routing in lightning network. shorturl.at/adrHP (2016)
Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and private: efficient decentralized routing for path-based transactions. arXiv preprint arXiv:1709.05748 (2017)
Sivaraman, V., et al.: High throughput cryptocurrency routing in payment channel networks. In: 17th USENIX Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 20), pp. 777–796 (2020)
Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html. Accessed 22 Nov 2020
Toft, T.: Solving linear programs using multiparty computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_6
Tripathy, S., Mohanty, S.K.: MAPPCN: multi-hop anonymous and privacy-preserving payment channel network. In: Bernhard, M., et al. (eds.) FC 2020. LNCS, vol. 12063, pp. 481–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54455-3_34
Yu, R., Xue, G., Kilari, V.T., Yang, D., Tang, J.: Coinexpress: a fast payment routing mechanism in blockchain-based payment channel networks. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Financial Cryptography Association
About this paper
Cite this paper
Avarikioti, Z., Pietrzak, K., Salem, I., Schmid, S., Tiwari, S., Yeo, M. (2022). Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel Networks. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-18283-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18282-2
Online ISBN: 978-3-031-18283-9
eBook Packages: Computer ScienceComputer Science (R0)