Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel Networks

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13411))

Included in the following conference series:

Abstract

Payment channels effectively move the transaction load off-chain thereby successfully addressing the inherent scalability problem most cryptocurrencies face. A major drawback of payment channels is the need to “top up” funds on-chain when a channel is depleted. Rebalancing was proposed to alleviate this issue, where parties with depleting channels move their funds along a cycle to replenish their channels off-chain. Protocols for rebalancing so far either introduce local solutions or compromise privacy.

In this work, we present an opt-in rebalancing protocol that is both private and globally optimal, meaning our protocol maximizes the total amount of rebalanced funds. We study rebalancing from the framework of linear programming. To obtain full privacy guarantees, we leverage multi-party computation in solving the linear program, which is executed by selected participants to maintain efficiency. Finally, we efficiently decompose the rebalancing solution into incentive-compatible cycles which conserve user balances when executed atomically.

Supported by the Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023.

Supported partially by the Austrian Science Fund (FWF) project “Design Framework for Self-Driving Networks” (ADVISE), I 4800-N, 2020–2023 and Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023.

Supported partially by ERC Starting Grant QIP–805241, the Vienna Cybersecurity and Privacy Research Center (ViSP), funded by the Vienna business agency (Wirtschaftsagentur), 2020–2023, and by Harmony through the Research DAO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rebalance plugin. https://github.com/lightningd/plugins/tree/master/rebalance

  2. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: PODC (2006). https://doi.org/10.1145/1146381.1146393

  3. Ahuja, R., Magnanti, T., Orlin, J.: Network flows - theory, algorithms and applications (1993)

    Google Scholar 

  4. Ahuja, R., Goldberg, A., Orlin, J., Tarjan, R.: Finding minimum-cost flows by double scaling. Math. Program. 53, 243–266 (1992). https://doi.org/10.1007/BF01585705

  5. Aly, A.: Network flow problems with secure multiparty computation (2015)

    Google Scholar 

  6. Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick: asynchronous incentive-compatible payment channels. In: FC (2021). https://fc21.ifca.ai/papers/168.pdf

  7. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: incentivizing watchtowers for bitcoin. In: FC (2020). https://doi.org/10.1007/978-3-030-51280-4_19

  8. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_20

    Chapter  Google Scholar 

  9. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3_9

    Chapter  Google Scholar 

  10. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_37

    Chapter  Google Scholar 

  11. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_15

    Chapter  Google Scholar 

  12. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Stabilization, Safety, and Security of Distributed Systems (2015). https://doi.org/10.1007/978-3-319-21741-3_1

  13. van Engelshoven, Y., Roos, S.: The merchant: avoiding payment channel depletion through incentives. CoRR abs/2012.10280 (2020). https://arxiv.org/abs/2012.10280

  14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Eurocrypt (2015). https://doi.org/10.1007/978-3-662-46803-6_10

  15. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP (2017). https://doi.org/10.1145/3132747.3132757

  16. Joseph Poon, T.D.: The bitcoin lightning network: Scalable off-chain instant payments. Technical report. https://lightning.network/lightning-network-paper.pdf

  17. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: CCS (2017). https://doi.org/10.1145/3133956.3134033

  18. Li, P., Miyazaki, T., Zhou, W.: Secure balance planning of off-blockchain payment channel networks. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 1728–1737 (2020). https://doi.org/10.1109/INFOCOM41043.2020.9155375

  19. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: enforcing security and privacy in decentralized credit networks. In: NDSS (2017). https://doi.org/10.14722/ndss.2017.23448

  20. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. In: NDSS (2019). https://doi.org/10.14722/ndss.2019.23330

  21. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels: Payment networks that go faster than lightning. In: FC (2019). https://doi.org/10.1007/978-3-030-32101-7_30

  22. Orlin, J.: A polynomial time primal network simplex algorithm for minimum cost flows. Math. Prog. 78, 109–129 (1996). https://doi.org/10.1007/BF02614365

  23. Pickhardt, R., Nowostawski, M.: Imbalance measure and proactive channel rebalancing algorithm for the lightning network. In: IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2020, Toronto, ON, Canada, 2–6 May, 2020, pp. 1–5. IEEE (2020). https://doi.org/10.1109/ICBC48266.2020.9169456

  24. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2015). https://lightning.network/lightning-network-paper.pdf

  25. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an approach to routing in lightning network. shorturl.at/adrHP (2016)

    Google Scholar 

  26. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and private: efficient decentralized routing for path-based transactions. arXiv preprint arXiv:1709.05748 (2017)

  27. Sivaraman, V., et al.: High throughput cryptocurrency routing in payment channel networks. In: 17th USENIX Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 20), pp. 777–796 (2020)

    Google Scholar 

  28. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html. Accessed 22 Nov 2020

  29. Toft, T.: Solving linear programs using multiparty computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_6

    Chapter  Google Scholar 

  30. Tripathy, S., Mohanty, S.K.: MAPPCN: multi-hop anonymous and privacy-preserving payment channel network. In: Bernhard, M., et al. (eds.) FC 2020. LNCS, vol. 12063, pp. 481–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54455-3_34

    Chapter  Google Scholar 

  31. Yu, R., Xue, G., Kilari, V.T., Yang, D., Tang, J.: Coinexpress: a fast payment routing mechanism in blockchain-based payment channel networks. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarth Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avarikioti, Z., Pietrzak, K., Salem, I., Schmid, S., Tiwari, S., Yeo, M. (2022). Hide & Seek: Privacy-Preserving Rebalancing on Payment Channel Networks. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18283-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18282-2

  • Online ISBN: 978-3-031-18283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics