Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Machine Learning Computational Framework for Alzheimer’s Disease Stages Classification

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 561))

Included in the following conference series:

Abstract

Alzheimer’s Disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. In 2016 an estimated 40 million people were diagnosed with AD, and the expectation for 2050 is 131 million. Therefore, healthcare systems require detecting and confirming AD at its different stages to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to classify AD’s stages. It has become a priority to develop a framework for AD’s stages detection based on ML and imputation methods capable of handling datasets with missing values while providing high accuracy. We propose a ML computational framework that integrates data processing, feature selection, imputation methods and 5 different ML models. The performance of the proposed framework has been evaluated using the main metrics for classification problem; accuracy, F1- score, recall, and precision. As a results of the proposed process, our framework classifies the AD’s onsets with an accuracy of 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biomarkers of Alzheimer’s disease: Neurobiol. Dis. 35(2), 128–140 (2009). Biomarkers of Neuropsychiatric Disease

    Google Scholar 

  2. Alzheimer’s disease facts and figures: Alzheimer’s & Dementia 17(3), 327–406 (2021)

    Google Scholar 

  3. Aghili, M., et al.: Prediction modeling of Alzheimer’s disease and its prodromal stages from multimodal data with missing values. Int. J. Med. Health Sci. 13(2), 36–40 (2019)

    Google Scholar 

  4. Antor, M.B., et al.: A comparative analysis of machine learning algorithms to predict Alzheimer’s disease. J. Healthc. Eng. 2021, 1–12 (2021)

    Google Scholar 

  5. Bae, J.-M.: Clinical decision analysis using decision tree. Epidemiol. Health 36, e2014025 (2014). https://doi.org/10.4178/epih/e2014025. Korean Society of Epidemiology

  6. Battineni, G., et al.: Improved Alzheimer’s disease detection by MRI using multimodal machine learning algorithms. Diagnostics 11(11), 2103 (2021)

    Google Scholar 

  7. Bhagwat, N., Viviano, J.D., Voineskos, A.N., Chakravarty, M.M., Alzheimer’s Disease Neuroimaging Initiative, et al.: Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput. Biol. 14(9), e1006376 (2018)

    Google Scholar 

  8. Bhatkoti, P., Paul, M.: Early diagnosis of Alzheimer’s disease: a multi-class deep learning framework with modified k-sparse autoencoder classification. In: 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–5 (2016)

    Google Scholar 

  9. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Routledge (2017)

    Google Scholar 

  11. Buntine, W., Niblett, T.: A further comparison of splitting rules for decision-tree induction. Mach. Learn. 8(1), 75–85 (1992)

    Article  Google Scholar 

  12. Campos, S., Pizarro, L., Valle, C., Gray, K.R., Rueckert, D., Allende, H.: Evaluating imputation techniques for missing data in ADNI: a patient classification study. In: CIARP 2015. LNCS, vol. 9423, pp. 3–10. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25751-8_1

    Chapter  Google Scholar 

  13. Chávez-Gutiérrez, L., et al.: The mechanism of \(\gamma \)-secretase dysfunction in familial Alzheimer disease. EMBO J. 31(10), 2261–2274 (2012)

    Google Scholar 

  14. Crous-Bou, M., Minguillón, C., Gramunt, N., Molinuevo, J.L.: Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Res. Therapy 9(1) (2017). https://doi.org/10.1186/s13195-017-0297-z

  15. Fan, Z., Fanyu, X., Qi, X., Li, C., Yao, L.: Classification of Alzheimer’s disease based on brain MRI and machine learning. Neural Comput. Appl. 32(7), 1927–1936 (2019)

    Article  Google Scholar 

  16. Feng, Q., Zhu, D., Yang, J., Li, B.: Multisource hyperspectral and lidar data fusion for urban land-use mapping based on a modified two-branch convolutional neural network. ISPRS Int. J. Geo-Inf. 8, 28 (2019)

    Google Scholar 

  17. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). http://www.jstor.org/stable/2699986. Institute of Mathematical Statistics. ISSN 00905364

  18. Gao, H., Li, Y., Zhang, Z., Zhao, W.: Editorial: machine learning used in biomedical computing and intelligence healthcare, volume i. Frontiers in Genetics, 12 May 2021

    Google Scholar 

  19. Humpel, C.: Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 29(1), 26–32 (2011)

    Article  Google Scholar 

  20. Joshi, S., Shenoy, D., Simha, G.G.V., Rrashmi, P.L., Venugopal, K.R., Patnaik, L.M.: Classification of Alzheimer’s disease and Parkinson’s disease by using machine learning and neural network methods. In: 2010 Second International Conference on Machine Learning and Computing, pp. 218–222 (2010)

    Google Scholar 

  21. Kalaria, R.N., et al.: Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 7(9), 812–826 (2008)

    Google Scholar 

  22. Koohy, H.: The rise and fall of machine learning methods in biomedical research. F1000Research, 6:2012, January 2018

    Google Scholar 

  23. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta-a system for feature selection. Fundamenta Informaticae 101(4), 271–285 (2010)

    Google Scholar 

  24. Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010)

    Google Scholar 

  25. Li, D.-C., Liu, C.-W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52(1), 45–52 (2011)

    Google Scholar 

  26. Mahendran, N., PM, D.R.V.: A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease. Comput. Biol. Med. 141, 105056 (2022)

    Google Scholar 

  27. Murtagh, F.: Multilayer perceptrons for classification and regression. Neurocomputing 2(5–6), 183–197 (1991)

    Article  MathSciNet  Google Scholar 

  28. De Velasco Oriol, J., Vallejo, E.E., Estrada, K., Peña, J.G.T., The Alzheimer’s Disease Neuroimaging Initiative: Benchmarking machine learning models for late-onset Alzheimer’s disease prediction from genomic data. BMC Bioinformat. 20(1), 1–17 (2019)

    Google Scholar 

  29. Reitz, C., Mayeux, R.: Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88(4), 640–651 (2014)

    Article  Google Scholar 

  30. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  31. Sharma, N.: Exploring biomarkers for Alzheimer’s disease. JCDR 10, KE01 (2016)

    Google Scholar 

  32. Shishegar, R., et al. Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI. Sci. Rep. 11(1), 1–11 (2021)

    Google Scholar 

  33. Singh, D., Singh, B.: Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97, 105524 (2020)

    Article  Google Scholar 

  34. Vélez, J.I., et al.: A comprehensive machine learning framework for the exact prediction of the age of onset in familial and sporadic Alzheimer’s disease. Diagnostics 11(5), 887 (2021)

    Google Scholar 

  35. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)

    Google Scholar 

  36. Yang, W., et al.: Independent component analysis-based classification of Alzheimer’s disease MRI data. J. Alzheimer’s Dis. 24(4), 775–783 (2011)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge NIH BioMed Grant Number 150108136 under Florida A &M University, and CI-New: Cognitive Hardware and Software Ecosystem Community Infrastructure for allow us to run our application in their infrastructure (Nautilus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Theran-Suarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theran-Suarez, C., Bautista, Y.J.P., Adankai, V., Aló, R. (2023). Machine Learning Computational Framework for Alzheimer’s Disease Stages Classification. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-18344-7_26

Download citation

Publish with us

Policies and ethics