Abstract
We consider the open online dial-a-ride problem, where transportation requests appear online in a metric space and need to be served by a single server. The objective is to minimize the completion time until all requests have been served. We present a new, parameterized algorithm for this problem and prove that it attains a competitive ratio of \(1 + \varphi \approx 2.618\) for some choice of its parameter, where \(\varphi \) is the golden ratio. This improves the best known bounds for open online dial-a-ride both for general metric spaces as well as for the real line. We also give a lower bound of 2.457 for the competitive ratio of our algorithm for any parameter choice.
Supported by DFG grant DI 2041/2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If the server can distinguish the last request, it can start an optimal schedule once all requests are released, achieving a completion time of at most twice the optimum.
- 2.
We adopt a strict definition of the competitive ratio that requires a bounded ratio for all request sequences, i.e., we do not allow an additive constant.
References
Allulli, L., Ausiello, G., Laura, L.: On the power of lookahead in on-line vehicle routing problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 728–736. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_74
Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_53
Ausiello, G., Demange, M., Laura, L., Paschos, V.: Algorithms for the on-line quota traveling salesman problem. Inf. Process. Lett. 92(2), 89–94 (2004)
Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001). https://doi.org/10.1007/s004530010071
Ausiello, G., Allulli, L., Bonifaci, V., Laura, L.: On-line algorithms, real time, the virtue of laziness, and the power of clairvoyance. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11750321_1
Bienkowski, M., Kraska, A., Liu, H.: Traveling repairperson, unrelated machines, and other stories about average completion times. In: Bansal, N., Merelli, E., Worrell, J. (eds.) Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 1–20 (2021)
Bienkowski, M., Liu, H.: An improved online algorithm for the traveling repairperson problem on a line. In: Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 6:1–6:12 (2019)
Birx, A.: Competitive analysis of the online dial-a-ride problem. Ph.D. Thesis, TU Darmstadt (2020)
Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online dial-a-ride on the line. SIAM J. Discret. Math. 34(2), 1409–1443 (2020)
Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride on the line. In: Proceedings of the 22nd International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), vol. 145, p. 21(22) (2019)
Bjelde, A., et al.: Tight bounds for online TSP on the line. ACM Transact. Algorithms 17(1), 1–58 (2020)
Blom, M., Krumke, S.O., de Paepe, W.E., Stougie, L.: The online TSP against fair adversaries. INFORMS J. Comput. 13(2), 138–148 (2001)
Bonifaci, V., Stougie, L.: Online \(k\)-server routing problems. Theor. Comput. Syst. 45(3), 470–485 (2008)
Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoret. Comput. Sci. 268(1), 91–105 (2001)
Hauptmeier, D., Krumke, S., Rambau, J., Wirth, H.C.: Euler is standing in line dial-a-ride problems with precedence-constraints. Discret. Appl. Math. 113(1), 87–107 (2001)
Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under reasonable load. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 125–136. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-9_11
Jaillet, P., Lu, X.: Online traveling salesman problems with service flexibility. Networks 58(2), 137–146 (2011)
Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Networks 64(2), 84–95 (2014)
Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios, resource augmentation, and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)
Jawgal, V.A., Muralidhara, V.N., Srinivasan, P.S.: Online travelling salesman problem on a circle. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_20
Krumke, S.O.: Online optimization competitive analysis and beyond. Habilitation thesis, Zuse Institute Berlin (2001)
Krumke, S.O., et al.: Non-abusiveness helps: an O(1)-competitive algorithm for minimizing the maximum flow time in the online traveling salesman problem. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 200–214. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45753-4_18
Krumke, S.O., de Paepe, W.E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela, A., Stougie, L.: On minimizing the maximum flow time in the online dial-a-ride problem. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 258–269. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411_20
Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L.: News from the online traveling repairman. Theoret. Comput. Sci. 295(1–3), 279–294 (2003)
Lipmann, M., Lu, X., de Paepe, W.E., Sitters, R.A., Stougie, L.: On-line dial-a-ride problems under a restricted information model. Algorithmica 40(4), 319–329 (2004)
Lippmann, M.: On-line routing. Ph.D. thesis, Technische Universiteit Eindhoven (2003)
Yi, F., Tian, L.: On the online dial-a-ride problem with time-windows. In: Megiddo, N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 85–94. Springer, Heidelberg (2005). https://doi.org/10.1007/11496199_11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Baligács, J., Disser, Y., Mosis, N., Weckbecker, D. (2022). An Improved Algorithm for Open Online Dial-a-Ride. In: Chalermsook, P., Laekhanukit, B. (eds) Approximation and Online Algorithms. WAOA 2022. Lecture Notes in Computer Science, vol 13538. Springer, Cham. https://doi.org/10.1007/978-3-031-18367-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-18367-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18366-9
Online ISBN: 978-3-031-18367-6
eBook Packages: Computer ScienceComputer Science (R0)