Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Improved Algorithm for Open Online Dial-a-Ride

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2022)

Abstract

We consider the open online dial-a-ride problem, where transportation requests appear online in a metric space and need to be served by a single server. The objective is to minimize the completion time until all requests have been served. We present a new, parameterized algorithm for this problem and prove that it attains a competitive ratio of \(1 + \varphi \approx 2.618\) for some choice of its parameter, where \(\varphi \) is the golden ratio. This improves the best known bounds for open online dial-a-ride both for general metric spaces as well as for the real line. We also give a lower bound of 2.457 for the competitive ratio of our algorithm for any parameter choice.

Supported by DFG grant DI 2041/2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If the server can distinguish the last request, it can start an optimal schedule once all requests are released, achieving a completion time of at most twice the optimum.

  2. 2.

    We adopt a strict definition of the competitive ratio that requires a bounded ratio for all request sequences, i.e., we do not allow an additive constant.

References

  1. Allulli, L., Ausiello, G., Laura, L.: On the power of lookahead in on-line vehicle routing problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 728–736. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_74

    Chapter  Google Scholar 

  2. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_53

    Chapter  Google Scholar 

  3. Ausiello, G., Demange, M., Laura, L., Paschos, V.: Algorithms for the on-line quota traveling salesman problem. Inf. Process. Lett. 92(2), 89–94 (2004)

    Article  MathSciNet  Google Scholar 

  4. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001). https://doi.org/10.1007/s004530010071

    Article  MathSciNet  MATH  Google Scholar 

  5. Ausiello, G., Allulli, L., Bonifaci, V., Laura, L.: On-line algorithms, real time, the virtue of laziness, and the power of clairvoyance. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11750321_1

    Chapter  MATH  Google Scholar 

  6. Bienkowski, M., Kraska, A., Liu, H.: Traveling repairperson, unrelated machines, and other stories about average completion times. In: Bansal, N., Merelli, E., Worrell, J. (eds.) Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 1–20 (2021)

    Google Scholar 

  7. Bienkowski, M., Liu, H.: An improved online algorithm for the traveling repairperson problem on a line. In: Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 6:1–6:12 (2019)

    Google Scholar 

  8. Birx, A.: Competitive analysis of the online dial-a-ride problem. Ph.D. Thesis, TU Darmstadt (2020)

    Google Scholar 

  9. Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online dial-a-ride on the line. SIAM J. Discret. Math. 34(2), 1409–1443 (2020)

    Article  MathSciNet  Google Scholar 

  10. Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride on the line. In: Proceedings of the 22nd International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), vol. 145, p. 21(22) (2019)

    Google Scholar 

  11. Bjelde, A., et al.: Tight bounds for online TSP on the line. ACM Transact. Algorithms 17(1), 1–58 (2020)

    MathSciNet  Google Scholar 

  12. Blom, M., Krumke, S.O., de Paepe, W.E., Stougie, L.: The online TSP against fair adversaries. INFORMS J. Comput. 13(2), 138–148 (2001)

    Article  MathSciNet  Google Scholar 

  13. Bonifaci, V., Stougie, L.: Online \(k\)-server routing problems. Theor. Comput. Syst. 45(3), 470–485 (2008)

    Article  MathSciNet  Google Scholar 

  14. Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoret. Comput. Sci. 268(1), 91–105 (2001)

    Article  MathSciNet  Google Scholar 

  15. Hauptmeier, D., Krumke, S., Rambau, J., Wirth, H.C.: Euler is standing in line dial-a-ride problems with precedence-constraints. Discret. Appl. Math. 113(1), 87–107 (2001)

    Article  MathSciNet  Google Scholar 

  16. Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under reasonable load. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 125–136. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-9_11

    Chapter  Google Scholar 

  17. Jaillet, P., Lu, X.: Online traveling salesman problems with service flexibility. Networks 58(2), 137–146 (2011)

    Article  MathSciNet  Google Scholar 

  18. Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Networks 64(2), 84–95 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios, resource augmentation, and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)

    Article  MathSciNet  Google Scholar 

  20. Jawgal, V.A., Muralidhara, V.N., Srinivasan, P.S.: Online travelling salesman problem on a circle. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_20

    Chapter  Google Scholar 

  21. Krumke, S.O.: Online optimization competitive analysis and beyond. Habilitation thesis, Zuse Institute Berlin (2001)

    Google Scholar 

  22. Krumke, S.O., et al.: Non-abusiveness helps: an O(1)-competitive algorithm for minimizing the maximum flow time in the online traveling salesman problem. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 200–214. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45753-4_18

    Chapter  Google Scholar 

  23. Krumke, S.O., de Paepe, W.E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela, A., Stougie, L.: On minimizing the maximum flow time in the online dial-a-ride problem. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 258–269. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411_20

    Chapter  MATH  Google Scholar 

  24. Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L.: News from the online traveling repairman. Theoret. Comput. Sci. 295(1–3), 279–294 (2003)

    Article  MathSciNet  Google Scholar 

  25. Lipmann, M., Lu, X., de Paepe, W.E., Sitters, R.A., Stougie, L.: On-line dial-a-ride problems under a restricted information model. Algorithmica 40(4), 319–329 (2004)

    Article  MathSciNet  Google Scholar 

  26. Lippmann, M.: On-line routing. Ph.D. thesis, Technische Universiteit Eindhoven (2003)

    Google Scholar 

  27. Yi, F., Tian, L.: On the online dial-a-ride problem with time-windows. In: Megiddo, N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 85–94. Springer, Heidelberg (2005). https://doi.org/10.1007/11496199_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Weckbecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baligács, J., Disser, Y., Mosis, N., Weckbecker, D. (2022). An Improved Algorithm for Open Online Dial-a-Ride. In: Chalermsook, P., Laekhanukit, B. (eds) Approximation and Online Algorithms. WAOA 2022. Lecture Notes in Computer Science, vol 13538. Springer, Cham. https://doi.org/10.1007/978-3-031-18367-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18367-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18366-9

  • Online ISBN: 978-3-031-18367-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics