Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Computer vision has been applied widely in cybersecurity, specially for authentication purposes like iris or fingerprint recognition. Image processing techniques also allow to understand hand gestures of the sign language alphabet, among others. Combining both approaches, in this paper, a system to detect the hand SOS gesture is proposed. By training a model to understand hand gestures, the detection of a certain sequence of hand gestures make possible to identify the SOS signal. The proposed method can be deployed in surveillance systems and others devices with a camera such as social robots. So, victims can ask for help silently and alarms can inform the authorities automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboah, A.: A vision-based system for traffic anomaly detection using deep learning and decision trees. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4207–4212 (2021)

    Google Scholar 

  2. Alnujaim, I., Alali, H., Khan, F., Kim, Y.: Hand gesture recognition using input impedance variation of two antennas with transfer learning. IEEE Sens. J. 18(10), 4129–4135 (2018). https://doi.org/10.1109/JSEN.2018.2820000

    Article  Google Scholar 

  3. Álvarez Aparicio, C., et al.: People detection and tracking using lidar sensors. Robotics 8(3), 75 (2019). https://doi.org/10.3390/robotics8030075, https://www.mdpi.com/2218-6581/8/3/75

  4. Azad, R., Azad, B., Kazerooni, I.T.: Real-time and robust method for hand gesture recognition system based on cross-correlation coefficient. ACSIJ Adv. Comput. Sci. Int. J. 2(6) (2013)

    Google Scholar 

  5. Baptista, I., Shiaeles, S., Kolokotronis, N.: A novel malware detection system based on machine learning and binary visualization. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)

    Google Scholar 

  6. Berting, N.: A hand signal for help. Online campaign to support those experiencing violence in isolation (2020). https://www.whatdesigncando.com/stories/a-hand-signal-for-help/. Accessed 6 May 2022

  7. Bhele, S.G., Mankar, V., et al.: A review paper on face recognition techniques. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 1(8), 339–346 (2012)

    Google Scholar 

  8. Chen, J.L., Ma, Y.W., Huang, K.L.: Intelligent visual similarity-based phishing websites detection. Symmetry 12(10) (2020).https://doi.org/10.3390/sym12101681, https://www.mdpi.com/2073-8994/12/10/1681

  9. Dargan, S., Kumar, M.: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst. Appl. 143, 113114 (2020). https://doi.org/10.1016/j.eswa.2019.113114https://www.sciencedirect.com/science/article/pii/S0957417419%308310

  10. Daugman, J.: How iris recognition works. In: The Essential Guide to Image Processing, pp. 715–739. Elsevier (2009)

    Google Scholar 

  11. Fronteddu, G., Porcu, S., Floris, A., Atzori, L.: A dynamic hand gesture recognition dataset for human-computer interfaces. Comput. Netw. 205, 108781 (2022). https://doi.org/10.1016/j.comnet.2022.108781, https://www.sciencedirect.com/science/article/pii/S1389128622%000172

  12. Gadekallu, T.R., et al.: Hand gesture recognition based on a Harris hawks optimized convolution neural network. Comput. Electr. Eng. 100, 107836 (2022). https://doi.org/10.1016/j.compeleceng.2022.107836, https://www.sciencedirect.com/science/article/pii/S0045790622%00129X

  13. Gunes, H., Piccardi, M., Jan, T.: Face and body gesture recognition for a vision-based multimodal analyzer. In: Piccardi, M., Hintz, T., He, S., Huang, M.L., Feng, D.D. (eds.) Visual Information Processing 2003, Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing, VIP2003, CRPIT, vol. 36, pp. 19–28. Australian Computer Society (2003). https://crpit.scem.westernsydney.edu.au/abstracts/CRPITV36Gunes.html

  14. Ito, K., Aoki, T.: [Invited paper] recent advances in biometric recognition. ITE Trans. Media Technol. Appl. 6(1), 64–80 (2018). https://doi.org/10.3169/mta.6.64

    Article  Google Scholar 

  15. Kapitanov, A., Makhlyarchuk, A., Kvanchiani, K.: Hagrid - hand gesture recognition image dataset (2022). https://doi.org/10.48550/ARXIV.2206.08219, https://arxiv.org/abs/2206.08219

  16. Kasapbaşi, A., Elbushra, A.E.A., Al-hardanee, O., Yilmaz, A.: DeepASLR: a CNN based human computer interface for American sign language recognition for hearing-impaired individuals. Comput. Methods Programs Biomed. Update 2, 100048 (2022). https://doi.org/10.1016/j.cmpbup.2021.100048, https://www.sciencedirect.com/science/article/pii/S2666990021%000471

  17. Lahiani, H., Neji, M.: Hand gesture recognition method based on hog-lbp features for mobile devices. Procedia Comput. Sci. 126, 254–263 (2018). https://doi.org/10.1016/j.procs.2018.07.259, https://www.sciencedirect.com/science/article/pii/S1877050918%312353.Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 22nd International Conference, KES-2018, Belgrade, Serbia

  18. Lin, W.C., Yeh, Y.R.: Efficient malware classification by binary sequences with one-dimensional convolutional neural networks. Mathematics 10(4) (2022). https://doi.org/10.3390/math10040608, https://www.mdpi.com/2227-7390/10/4/608

  19. Liu, H., Wong, A.M.H., Kang, D.K.: Stationary hand gesture authentication using edit distance on finger pointing direction interval. Sci. Program. 2016, 7427980 (2016). https://doi.org/10.1155/2016/7427980, https://doi.org/10.1155/2016/7427980

  20. LLC, G.: MediaPipe hands (2020). https://google.github.io/mediapipe/solutions/hands. Accessed 26 Nov 2021

  21. Oudah, M., Al-Naji, A., Chahl, J.: Hand gesture recognition based on computer vision: a review of techniques. J. Imaging 6(8) (2020). https://doi.org/10.3390/jimaging6080073. https://www.mdpi.com/2313-433X/6/8/73

  22. Pakutharivu, P., Srinath, M.V.: A comprehensive survey on fingerprint recognition systems. Indian J. Sci. Technol. 8(35), 1–7 (2015)

    Article  Google Scholar 

  23. Singh, G., Singh, R.K., Saha, R., Agarwal, N.: IWT based iris recognition for image authentication. Procedia Comput. Sci. 171, 1868–1876 (2020). https://doi.org/10.1016/j.procs.2020.04.200, https://www.sciencedirect.com/science/article/pii/S1877050920%311819. Third International Conference on Computing and Network Communications (CoCoNet 2019)

  24. Sætra, H.S.: The foundations of a policy for the use of social robots in care. Technol. Soc. 63, 101383 (2020). https://doi.org/10.1016/j.techsoc.2020.101383, https://www.sciencedirect.com/science/article/pii/S0160791X20%303262

  25. Takahashi, K.: Hand gesture recognition using MediaPipe (2021). https://github.com/Kazuhito00/hand-gesture-recognition-using-mediapipe. Accessed 26 Nov 2021

  26. Toral-Álvarez, V., Álvarez-Aparicio, C., Guerrero-Higueras, Á.M., Fernández-Llamas, C.: Gait-based authentication using a RGB camera. In: Gude Prego, J.J., de la Puerta, J.G., García Bringas, P., Quintián, H., Corchado, E. (eds.) CISIS - ICEUTE 2021. AISC, vol. 1400, pp. 126–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87872-6_13

    Chapter  Google Scholar 

  27. Zhao, J., Masood, R., Seneviratne, S.: A review of computer vision methods in network security. IEEE Commun. Surv. Tutorials 23(3), 1838–1878 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

Virginia Riego would like to thank Universidad de León for its funding support for her doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Sánchez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viejo-López, R., Riego del Castillo, V., Sánchez-González, L. (2023). Hand SOS Gesture Detection by Computer Vision. In: García Bringas, P., et al. International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022). CISIS ICEUTE 2022 2022. Lecture Notes in Networks and Systems, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-031-18409-3_3

Download citation

Publish with us

Policies and ethics