Abstract
Computer vision has been applied widely in cybersecurity, specially for authentication purposes like iris or fingerprint recognition. Image processing techniques also allow to understand hand gestures of the sign language alphabet, among others. Combining both approaches, in this paper, a system to detect the hand SOS gesture is proposed. By training a model to understand hand gestures, the detection of a certain sequence of hand gestures make possible to identify the SOS signal. The proposed method can be deployed in surveillance systems and others devices with a camera such as social robots. So, victims can ask for help silently and alarms can inform the authorities automatically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aboah, A.: A vision-based system for traffic anomaly detection using deep learning and decision trees. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4207–4212 (2021)
Alnujaim, I., Alali, H., Khan, F., Kim, Y.: Hand gesture recognition using input impedance variation of two antennas with transfer learning. IEEE Sens. J. 18(10), 4129–4135 (2018). https://doi.org/10.1109/JSEN.2018.2820000
Álvarez Aparicio, C., et al.: People detection and tracking using lidar sensors. Robotics 8(3), 75 (2019). https://doi.org/10.3390/robotics8030075, https://www.mdpi.com/2218-6581/8/3/75
Azad, R., Azad, B., Kazerooni, I.T.: Real-time and robust method for hand gesture recognition system based on cross-correlation coefficient. ACSIJ Adv. Comput. Sci. Int. J. 2(6) (2013)
Baptista, I., Shiaeles, S., Kolokotronis, N.: A novel malware detection system based on machine learning and binary visualization. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)
Berting, N.: A hand signal for help. Online campaign to support those experiencing violence in isolation (2020). https://www.whatdesigncando.com/stories/a-hand-signal-for-help/. Accessed 6 May 2022
Bhele, S.G., Mankar, V., et al.: A review paper on face recognition techniques. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 1(8), 339–346 (2012)
Chen, J.L., Ma, Y.W., Huang, K.L.: Intelligent visual similarity-based phishing websites detection. Symmetry 12(10) (2020).https://doi.org/10.3390/sym12101681, https://www.mdpi.com/2073-8994/12/10/1681
Dargan, S., Kumar, M.: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst. Appl. 143, 113114 (2020). https://doi.org/10.1016/j.eswa.2019.113114https://www.sciencedirect.com/science/article/pii/S0957417419%308310
Daugman, J.: How iris recognition works. In: The Essential Guide to Image Processing, pp. 715–739. Elsevier (2009)
Fronteddu, G., Porcu, S., Floris, A., Atzori, L.: A dynamic hand gesture recognition dataset for human-computer interfaces. Comput. Netw. 205, 108781 (2022). https://doi.org/10.1016/j.comnet.2022.108781, https://www.sciencedirect.com/science/article/pii/S1389128622%000172
Gadekallu, T.R., et al.: Hand gesture recognition based on a Harris hawks optimized convolution neural network. Comput. Electr. Eng. 100, 107836 (2022). https://doi.org/10.1016/j.compeleceng.2022.107836, https://www.sciencedirect.com/science/article/pii/S0045790622%00129X
Gunes, H., Piccardi, M., Jan, T.: Face and body gesture recognition for a vision-based multimodal analyzer. In: Piccardi, M., Hintz, T., He, S., Huang, M.L., Feng, D.D. (eds.) Visual Information Processing 2003, Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing, VIP2003, CRPIT, vol. 36, pp. 19–28. Australian Computer Society (2003). https://crpit.scem.westernsydney.edu.au/abstracts/CRPITV36Gunes.html
Ito, K., Aoki, T.: [Invited paper] recent advances in biometric recognition. ITE Trans. Media Technol. Appl. 6(1), 64–80 (2018). https://doi.org/10.3169/mta.6.64
Kapitanov, A., Makhlyarchuk, A., Kvanchiani, K.: Hagrid - hand gesture recognition image dataset (2022). https://doi.org/10.48550/ARXIV.2206.08219, https://arxiv.org/abs/2206.08219
Kasapbaşi, A., Elbushra, A.E.A., Al-hardanee, O., Yilmaz, A.: DeepASLR: a CNN based human computer interface for American sign language recognition for hearing-impaired individuals. Comput. Methods Programs Biomed. Update 2, 100048 (2022). https://doi.org/10.1016/j.cmpbup.2021.100048, https://www.sciencedirect.com/science/article/pii/S2666990021%000471
Lahiani, H., Neji, M.: Hand gesture recognition method based on hog-lbp features for mobile devices. Procedia Comput. Sci. 126, 254–263 (2018). https://doi.org/10.1016/j.procs.2018.07.259, https://www.sciencedirect.com/science/article/pii/S1877050918%312353.Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 22nd International Conference, KES-2018, Belgrade, Serbia
Lin, W.C., Yeh, Y.R.: Efficient malware classification by binary sequences with one-dimensional convolutional neural networks. Mathematics 10(4) (2022). https://doi.org/10.3390/math10040608, https://www.mdpi.com/2227-7390/10/4/608
Liu, H., Wong, A.M.H., Kang, D.K.: Stationary hand gesture authentication using edit distance on finger pointing direction interval. Sci. Program. 2016, 7427980 (2016). https://doi.org/10.1155/2016/7427980, https://doi.org/10.1155/2016/7427980
LLC, G.: MediaPipe hands (2020). https://google.github.io/mediapipe/solutions/hands. Accessed 26 Nov 2021
Oudah, M., Al-Naji, A., Chahl, J.: Hand gesture recognition based on computer vision: a review of techniques. J. Imaging 6(8) (2020). https://doi.org/10.3390/jimaging6080073. https://www.mdpi.com/2313-433X/6/8/73
Pakutharivu, P., Srinath, M.V.: A comprehensive survey on fingerprint recognition systems. Indian J. Sci. Technol. 8(35), 1–7 (2015)
Singh, G., Singh, R.K., Saha, R., Agarwal, N.: IWT based iris recognition for image authentication. Procedia Comput. Sci. 171, 1868–1876 (2020). https://doi.org/10.1016/j.procs.2020.04.200, https://www.sciencedirect.com/science/article/pii/S1877050920%311819. Third International Conference on Computing and Network Communications (CoCoNet 2019)
Sætra, H.S.: The foundations of a policy for the use of social robots in care. Technol. Soc. 63, 101383 (2020). https://doi.org/10.1016/j.techsoc.2020.101383, https://www.sciencedirect.com/science/article/pii/S0160791X20%303262
Takahashi, K.: Hand gesture recognition using MediaPipe (2021). https://github.com/Kazuhito00/hand-gesture-recognition-using-mediapipe. Accessed 26 Nov 2021
Toral-Álvarez, V., Álvarez-Aparicio, C., Guerrero-Higueras, Á.M., Fernández-Llamas, C.: Gait-based authentication using a RGB camera. In: Gude Prego, J.J., de la Puerta, J.G., García Bringas, P., Quintián, H., Corchado, E. (eds.) CISIS - ICEUTE 2021. AISC, vol. 1400, pp. 126–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87872-6_13
Zhao, J., Masood, R., Seneviratne, S.: A review of computer vision methods in network security. IEEE Commun. Surv. Tutorials 23(3), 1838–1878 (2021)
Acknowledgement
Virginia Riego would like to thank Universidad de León for its funding support for her doctoral studies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Viejo-López, R., Riego del Castillo, V., Sánchez-González, L. (2023). Hand SOS Gesture Detection by Computer Vision. In: García Bringas, P., et al. International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022). CISIS ICEUTE 2022 2022. Lecture Notes in Networks and Systems, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-031-18409-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-18409-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18408-6
Online ISBN: 978-3-031-18409-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)