Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Optimal Configuration of IDS for RPL Resource-Constrained Networks Using Evolutionary Algorithm

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 560))

Included in the following conference series:

  • 627 Accesses

Abstract

The RPL-enabled Internet of Things (IoT) is susceptible to many attacks as these devices are unattended, resource-constrained and connected via an unreliable network. Deploying Intrusion Detection Systems (IDSs) in such a large and resource-constrained environment is a challenging task. The resource-constrained nature of many devices and nodes restricts what tasks those nodes can realistically expect to perform. In this paper, we investigate the use of a meta-heuristic-based optimization method, namely a Genetic Algorithm (GA), to discover optimal IDS placements and configurations for Low Power and Lossy Networks (LLNs). To the best of our knowledge, this is the first attempt to optimise IDS configurations for emerging and constrained networks while incorporating a much wider set of aspects than currently considered. The targets our approach seeks to optimise and balance are the detection rate, F1 score, coverage, feasibility cost and deployment cost. We propose a framework that takes into consideration these functional and non-functional constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzubaidi, M., Anbar, M., Hanshi, S.M.: Neighbor-passive monitoring technique for detecting sinkhole attacks in RPL networks. In: Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence, pp. 173–182 (2017)

    Google Scholar 

  2. Amjad, M., Afzal, M.K., Umer, T., Kim, B.S.: Qos-aware and heterogeneously clustered routing protocol for wireless sensor networks. IEEE Access 5, 10250–10262 (2017)

    Google Scholar 

  3. Behera, T.M., Mohapatra, S.K., Samal, U.C., Khan, M.S., Daneshmand, M., Gandomi, A.H.: I-SEP: an improved routing protocol for heterogeneous WSN for IoT-based environmental monitoring. IEEE Internet Things J. 7(1), 710–717 (2020)

    Google Scholar 

  4. Chen, H., Clark, J.A., Tapiador, J.E., Shaikh, S.A., Chivers, H., Nobles, P.: A multi-objective optimisation approach to IDS sensor placement. In: Herrero, Á., Gastaldo, P., Zunino, R., Corchado, E. (eds.) Computational Intelligence in Security for Information Systems. Advances in Intelligent and Soft Computing, vol. 63, pp. 101–108. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04091-7_13

  5. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 181–192. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16493-4_19

    Chapter  Google Scholar 

  6. Ferdowsi, A., Saad, W.: Generative adversarial networks for distributed intrusion detection in the internet of things. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)

    Google Scholar 

  7. Ghafouri, A., Abbas, W., Laszka, A., Vorobeychik, Y., Koutsoukos, X.: Optimal thresholds for anomaly-based intrusion detection in dynamical environments. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 415–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47413-7_24

    Chapter  MATH  Google Scholar 

  8. Ghugar, U., Pradhan, J., Biswal, M.: A novel intrusion detection system for detecting black hole attacks in wireless sensor network using AODV protocol. IJCSN-Int. J. Comput. Sci. Netw. 5(4), 645–652 (2016)

    Google Scholar 

  9. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning (1989)

    Google Scholar 

  10. Hassanzadeh, A., Stoleru, R.: Towards optimal monitoring in cooperative ids for resource constrained wireless networks. In: 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), pp. 1–8. IEEE (2011)

    Google Scholar 

  11. Hassanzadeh, A., Stoleru, R.: On the optimality of cooperative intrusion detection for resource constrained wireless networks. Comput. Secur. 34, 16–35 (2013)

    Article  Google Scholar 

  12. Iova, O., Picco, P., Istomin, T., Kiraly, C.: RPL: the routing standard for the internet of things... or is it? IEEE Commun. Mag. 54(12), 16–22 (2016)

    Google Scholar 

  13. Jamshidi, M., Poor, S.S.A., Arghavani, A., Esnaashari, M., Shaltooki, A.A., Meybodi, M.R.: A simple, lightweight, and precise algorithm to defend against replica node attacks in mobile wireless networks using neighboring information. Ad Hoc Netw. 100, 102081 (2020)

    Google Scholar 

  14. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). Special Issue - Genetic Algorithms and Reliability

    Google Scholar 

  15. Krzysztoń, M., Marks, M.: Simulation of watchdog placement for cooperative anomaly detection in bluetooth mesh intrusion detection system. Simul. Model. Pract. Theory 101, 102041 (2020)

    Article  Google Scholar 

  16. Le, A., Loo, J., Chai, K.K., Aiash, M.: A specification-based ids for detecting attacks on RPL-based network topology. Information 7(2), 25 (2016)

    Google Scholar 

  17. Mahyoub, M., Mahmoud, A.S.H., Abu-Amara, M., Sheltami, T.R.: An efficient RPL-based mechanism for node-to-node communications in IoT. IEEE Internet Things J. 8(9), 7152–7169 (2020)

    Google Scholar 

  18. Mayzaud, A., Sehgal, A., Badonnel, R., Chrisment, I., Schönwälder, J.: Using the RPL protocol for supporting passive monitoring in the internet of things. In: NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, pp. 366–374. IEEE (2016)

    Google Scholar 

  19. Mishra, B., Smirnova, I. : Optimal configuration of intrusion detection systems. Inf. Technol. Manag. 22(4), 231–244 (2021)

    Google Scholar 

  20. Mohamed, K., Ali, S., Ali, S., Kassim, I.: Performance evaluation of RPL and DODAG formations for IoTs applications. In: 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 1–7. IEEE (2020)

    Google Scholar 

  21. Pasikhani, A.M., Clark, J.A., Gope, P., Alshahrani, A.: Intrusion detection systems in RPL-based 6LoWPAN: a systematic literature review. IEEE Sens. J. 21(11), 12940–12968 (2021)

    Google Scholar 

  22. Rasch, A., Haidl, M., Gorlatch, S.: ATF: a generic auto-tuning framework. In: 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 64–71. IEEE (2017)

    Google Scholar 

  23. Shaikh, S.A., Chivers, H., Nobles, P., Clark, J.A., Chen, H.: Characterising intrusion detection sensors, part 2. Netw. Secur. 2008(10), 8–11 (2008)

    Google Scholar 

  24. Shaikh, S.A., Chivers, H., Nobles, P., Clark, J.A., Chen, H.: A deployment value model for intrusion detection sensors. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 250–259. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1_26

    Chapter  Google Scholar 

  25. Stehlik, M., Saleh, A., Stetsko, A., Matyas, V.: Multi-objective optimization of intrusion detection systems for wireless sensor networks. In: ECAL 2013: The Twelfth European Conference on Artificial Life, pp. 569–576. MIT Press (2013)

    Google Scholar 

  26. Stetsko, A., Smolka, T., Matyáš, V., Stehlík, M.: Improving intrusion detection systems for wireless sensor networks. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 343–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_21

    Chapter  Google Scholar 

  27. Tapiador, J.E., Clark, J.A.: The placement-configuration problem for intrusion detection nodes in wireless sensor networks. Comput. Electr. Eng. 39(7), 2306–2317 (2013)

    Google Scholar 

  28. Tetcos: NetSim–Network Simulation Software. Netsim (2021)

    Google Scholar 

  29. Verma, A., Ranga, V.: Mitigation of dis flooding attacks in RPL-based 6lowpan networks. Trans. Emerg. Telecommun. Technol. 31(2), e3802 (2020)

    Google Scholar 

  30. Winter, T., et al.: RPL: ipv6 routing protocol for low-power and lossy networks. rfc 6550, 1–157 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmonem Alshahrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshahrani, A., Clark, J.A. (2023). On Optimal Configuration of IDS for RPL Resource-Constrained Networks Using Evolutionary Algorithm. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-18458-1_35

Download citation

Publish with us

Policies and ethics