Abstract
Since the fully convolutional networks was proposed, it has made great progress in the salient object detection. However, this kind of network structure still has obvious problems of incomplete salient objects segmentation and redundant information. Therefore, this paper propose a novel network model named Multi-scale Dense Network (MSDNet) to solve the above problems. First, we designed a multi-receptive enhancement and supplementation module(MRES), which increases the discriminability of features through feature interaction under different receptive fields. Second, we design a network framework MSDNet that first uses dense feature interactions and a pyramid-shaped feature fusion structure to get enhanced features and better features fusion. Experimental results on five benchmark datasets demonstrate the proposed method against 11 state-of-the-art approaches, it can effectively improve the completeness of salient objects and suppress background information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borji, A., Cheng, M.-M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)
Deng, Z., et al.: R3net: recurrent residual refinement network for saliency detection. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 684–690. AAAI Press, Menlo Park (2018)
Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)
Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)
Feng, M., Lu, H., Ding, E.: Attentive feedback network for boundary-aware salient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1623–1632 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)
Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)
Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3917–3926 (2019)
Liu, N., Han, J., Yang, M.H.: Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S., Jodoin, P.M.: Non-local deep features for salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6609–6617 (2017)
Ma, M., Xia, C., Li, J.: Pyramidal feature shrinking for salient object detection (2021)
Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9413–9422 (2020)
Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet: boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shi, J., Yan, Q., Li, X., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)
Wang, L., et al.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)
Wang, W., Zhao, S., Shen, J., Hoi, S.C.H., Borji, A.: Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1448–1457 (2019)
Wei, J., Wang, S., Huang, Q.: F\(^3\)net: fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12321–12328 (2020)
Wei, J., Wang, S., Wu, Z., Su, C., Huang, Q., Tian, Q.: Label decoupling framework for salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13025–13034 (2020)
Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2019)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M-H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
Zhao, J.-X., Liu, J.-J., Fan, D.-P., Cao, Y., Yang, J., Cheng, M.-M.: Egnet: edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8779–8788 (2019)
Zhao, Z., Xia, C., Xie, C., Li, J.: Complementary trilateral decoder for fast and accurate salient object detection. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4967–4975 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, H., Zhao, X., Yang, C., Li, Y., Wang, R. (2022). MSDNet: Multi-scale Dense Networks for Salient Object Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-18916-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18915-9
Online ISBN: 978-3-031-18916-6
eBook Packages: Computer ScienceComputer Science (R0)