Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Correct by Design Coordination of Autonomous Driving Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022)

Abstract

The paper proposes a method for the correct by design coordination of autonomous driving systems (ADS). It builds on previous results on collision avoidance policies and the modeling of ADS by combining descriptions of their static environment in the form of maps, and the dynamic behavior of their vehicles.

An ADS is modeled as a dynamic system involving a set of vehicles coordinated by a Runtime that based on vehicle positions on a map and their kinetic attributes, computes free spaces for each vehicle. Vehicles are bounded to move within the corresponding allocated free spaces. We provide a correct by design safe control policy for an ADS if its vehicles and the Runtime respect corresponding assume-guarantee contracts. The result is established by showing that the composition of assume-guarantee contracts is an inductive invariant that entails ADS safety.

We show that it is practically possible to define speed control policies for vehicles that comply with their contracts. Furthermore, we show that traffic rules can be specified in a linear-time temporal logic, as a class of formulas that constrain vehicle speeds. The main result is that, given a set of traffic rules, it is possible to derive free space policies of the Runtime such that the resulting system behavior is safe by design with respect to the rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ASAM OpenDRIVE® - open dynamic road information for vehicle environment. Technical report V 1.6.0, ASAM e.V., March 2020. https://www.asam.net/standards/detail/opendrive

  2. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: Intelligent Vehicles Symposium, pp. 1813–1820. IEEE (2018)

    Google Scholar 

  3. Beetz, J., Borrmann, A.: Benefits and limitations of linked data approaches for road modeling and data exchange. In: Smith, I., Domer, B. (eds.) EG-ICE. LNCS, vol. 10864, pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91638-5_13

    Chapter  Google Scholar 

  4. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des. Autom. 12(2–3), 124–400 (2018)

    Article  Google Scholar 

  5. Bozga, M., Sifakis, J.: Specification and validation of autonomous driving systems: a multilevel semantic framework. CoRR abs/2109.06478 (2021). https://arxiv.org/abs/2109.06478

  6. Bozga, M., Sifakis, J.: Correct by design coordination of autonomous driving systems. CoRR abs/2205.10037 (2022). https://doi.org/10.48550/arXiv.2205.10037

  7. Butz, M., et al.: SOCA: domain analysis for highly automated driving systems. In: ITSC, pp. 1–6. IEEE (2020)

    Google Scholar 

  8. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_21

    Chapter  Google Scholar 

  9. El-Hokayem, A., Bensalem, S., Bozga, M., Sifakis, J.: A layered implementation of DR-BIP supporting run-time monitoring and analysis. In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp. 284–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0_16

    Chapter  Google Scholar 

  10. Esterle, K., Gressenbuch, L., Knoll, A.C.: Formalizing traffic rules for machine interpretability. In: CAVS, pp. 1–7. IEEE (2020)

    Google Scholar 

  11. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic Manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_28

    Chapter  Google Scholar 

  12. Karimi, A., Duggirala, P.S.: Formalizing traffic rules for uncontrolled intersections. In: ICCPS, pp. 41–50. IEEE (2020)

    Google Scholar 

  13. Kress-Gazit, H., Pappas, G.J.: Automatically synthesizing a planning and control subsystem for the DARPA urban challenge. In: CASE, pp. 766–771. IEEE (2008)

    Google Scholar 

  14. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen, M.W.: From partial to global assume-guarantee contracts: compositional realizability analysis in FRET. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 503–523. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_27

    Chapter  Google Scholar 

  15. Meyer, B.: Applying “design by contract’’. Computer 25(10), 40–51 (1992)

    Article  Google Scholar 

  16. Poggenhans, F., et al.: Lanelet2: a high-definition map framework for the future of automated driving. In: ITSC, pp. 1672–1679. IEEE (2018)

    Google Scholar 

  17. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous vehicles. In: ITSC, pp. 1658–1665. IEEE (2015)

    Google Scholar 

  18. Rizaldi, A., Immler, F., Schürmann, B., Althoff, M.: A formally verified motion planner for autonomous vehicles. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 75–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_5

    Chapter  Google Scholar 

  19. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf, E., Nipkow, T.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

    Chapter  Google Scholar 

  20. Saoud, A., Girard, A., Fribourg, L.: Assume-guarantee contracts for continuous-time systems. Automatica 134, 109910 (2021)

    Article  MathSciNet  Google Scholar 

  21. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous vehicles. Annu. Rev. Control Robot. Auton. Syst. 1, 187–210 (2018). https://doi.org/10.1146/annurev-control-060117-105157

    Article  Google Scholar 

  22. Sharf, M., Besselink, B., Molin, A., Zhao, Q., Johansson, K.H.: Assume/guarantee contracts for dynamical systems: theory and computational tools. CoRR abs/2012.12657 (2020)

    Google Scholar 

  23. Sun, M., Bakirtzis, G., Jafarzadeh, H., Fleming, C.: Correct-by-construction: a contract-based semi-automated requirement decomposition process. CoRR abs/1909.02070 (2019)

    Google Scholar 

  24. Wang, Q., Li, D., Sifakis, J.: Safe and efficient collision avoidance control for autonomous vehicles. In: MEMOCODE, pp. 1–6. IEEE (2020)

    Google Scholar 

  25. Wang, Q., Zheng, X., Zhang, J., Sifakis, J.: A hybrid controller for safe and efficient collision avoidance control. CoRR abs/2103.15484 (2021). https://arxiv.org/abs/2103.15484

  26. Waqas, M., Murtaza, M.A., Nuzzo, P., Ioannou, P.: Correct-by-construction design of adaptive cruise control with control barrier functions under safety and regulatory constraints (2022). https://arxiv.org/abs/2203.14110

  27. Wongpiromsarn, T., Karaman, S., Frazzoli, E.: Synthesis of provably correct controllers for autonomous vehicles in urban environments. In: ITSC, pp. 1168–1173. IEEE (2011)

    Google Scholar 

  28. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Bozga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bozga, M., Sifakis, J. (2022). Correct by Design Coordination of Autonomous Driving Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19759-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19758-1

  • Online ISBN: 978-3-031-19759-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics