Abstract
Recent advances in generative adversarial networks have shown that it is possible to generate high-resolution and hyperrealistic images. However, the images produced by GANs are only as fair and representative as the datasets on which they are trained. In this paper, we propose a method for directly modifying a pre-trained StyleGAN2 model that can be used to generate a balanced set of images with respect to one (e.g., eyeglasses) or more attributes (e.g., gender and eyeglasses). Our method takes advantage of the style space of the StyleGAN2 model to perform disentangled control of the target attributes to be debiased. Our method does not require training additional models and directly debiases the GAN model, paving the way for its use in various downstream applications. Our experiments show that our method successfully debiases the GAN model within a few minutes without compromising the quality of the generated images. To promote fair generative models, we share the code and debiased models at http://catlab-team.github.io/fairstyle.
C. E. Karakas and A. Dirik—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: StyleFlow: attribute-conditioned exploration of StyleGan-generated images using conditional continuous normalizing flows. arXiv preprint arXiv:2008.02401 (2021)
Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H.M.: A reductions approach to fair classification. arXiv preprint arXiv:1803.02453 (2018)
Azadi, S., Olsson, C., Darrell, T., Goodfellow, I.J., Odena, A.: Discriminator rejection sampling. arXiv preprint arXiv:1810.06758 (2019)
Bau, D., Liu, S., Wang, T., Zhu, J.Y., Torralba, A.: Rewriting a deep generative model. arXiv preprint arXiv:2007.15646 (2020)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. CoRR abs/1809.11096, arXiv preprint arXiv:1809.11096 (2018)
Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: FAT (2018)
Feldman, M.: Computational fairness: preventing machine-learned discrimination. Ph.D. thesis, Haverford College (2015)
Goetschalckx, L., Andonian, A., Oliva, A., Isola, P.: GANalyze: toward visual definitions of cognitive image properties. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5744–5753 (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
Grover, A., Choi, K., Shu, R., Ermon, S.: Fair generative modeling via weak supervision. In: ICML (2020)
Grover, A., et al.: Bias correction of learned generative models using likelihood-free importance weighting. In: DGS@ICLR (2019)
Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: NIPS (2016)
Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: discovering interpretable GAN controls. arXiv preprint arXiv:2004.02546 (2020)
Jahanian, A., Chai, L., Isola, P.: On the steerability of generative adversarial networks. arXiv preprint arXiv:1907.07171 (2019)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. CoRR abs/1812.04948. arXiv preprint arxiv:1812.04948 (2018)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020)
Kocasari, U., Dirik, A., Tiftikci, M., Yanardag, P.: StyleMC: multi-channel based fast text-guided image generation and manipulation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3441–3450 (2022)
Lang, O., et al.: Explaining in style: training a GAN to explain a classifier in stylespace. arXiv preprint arxiv:2104.13369 (2021)
Li, S., et al.: Single image deraining: a comprehensive benchmark analysis (2019)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738 (2015)
Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.S.: The variational fair autoencoder. In: CoRR abs/1511.00830 (2016)
McDuff, D., Ma, S., Song, Y., Kapoor, A.: Characterizing bias in classifiers using generative models. arXiv preprint arXiv:1906.11891 (2019)
Oneto, L., Chiappa, S.: Fairness in machine learning. arXiv preprint arXiv:2012.15816 (2020)
Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleCLIP: text-driven manipulation of styleGAN imagery. arXiv preprint arXiv:2103.17249 (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Ramaswamy, V.V., Kim, S.S.Y., Russakovsky, O.: Fair attribute classification through latent space de-biasing. In: 21 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9297–9306 (2021)
Shen, Y., Yang, C., Tang, X., Zhou, B.: InterFaceGAN: interpreting the disentangled face representation learned by GANS. In: Transactions on Pattern Analysis and Machine Intelligence (2020)
Shen, Y., Zhou, B.: Closed-form factorization of latent semantics in GANs. arXiv preprint arXiv:2007.06600 (2020)
Sun, W., Chen, Z.: Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 29, 4027–4040 (2020). https://doi.org/10.1109/tip.2020.2970248
Tan, S., Shen, Y., Zhou, B.: Improving the fairness of deep generative models without retraining. arXiv preprint arXiv:2012.04842 2020)
Tanaka, A.: Discriminator optimal transport. In: NeurIPS (2019)
Tanielian, U., Issenhuth, T., Dohmatob, E., Mary, J.: Learning disconnected manifolds: a no GANs land. arXiv preprint arXiv:2006.04596 2020)
Voynov, A., Babenko, A.: Unsupervised discovery of interpretable directions in the GAN latent space. In: International Conference on Machine Learning, pp. 9786–9796. PMLR (2020)
Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.: Spatial attentive single-image deraining with a high quality real rain dataset (2019)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs (2017)
Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)
Woodworth, B.E., Gunasekar, S., Ohannessian, M.I., Srebro, N.: Learning non-discriminatory predictors. arXiv preprint arXiv:1702.06081 (2017)
Wu, Z., Lischinski, D., Shechtman, E.: StyleSpace analysis: disentangled controls for styleGAN image generation. arXiv preprint arXiv:2011.12799 (2020)
Yüksel, O.K., Simsar, E., Er, E.G., Yanardag, P.: LatentCLR: a contrastive learning approach for unsupervised discovery of interpretable directions. arXiv preprint arXiv:2104.00820 (2021)
Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness constraints: mechanisms for fair classification. In: AISTATS (2017)
Zemel, R.S., Wu, L.Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: ICML (2013)
Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative adversarial networks. CoRR abs/1710.10916, arXiv preprint arXiv:1710.10916 (2017)
Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593, arXiv preprint arXiv:1703.10593 (2017)
Acknowledgments
This publication has been produced benefiting from the 2232 International Fellowship for Outstanding Researchers Program of TUBITAK (Project No: 118c321).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Karakas, C.E., Dirik, A., Yalçınkaya, E., Yanardag, P. (2022). FairStyle: Debiasing StyleGAN2 with Style Channel Manipulations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-19778-9_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19777-2
Online ISBN: 978-3-031-19778-9
eBook Packages: Computer ScienceComputer Science (R0)