Abstract
Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4–27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. https://github.com/megvii-research/ECCV2022-RIFE
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G.E., Hinton, G.E.: Large scale distributed neural network training through online distillation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Journal of Computer Vision (IJCV) (2011)
Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE TPAMI) (2018). https://doi.org/10.1109/TPAMI.2019.2941941
Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Briedis, K.M., Djelouah, A., Meyer, M., McGonigal, I., Gross, M., Schroers, C.: Neural frame interpolation for rendered content. ACM Trans. Graph. 40(6), 1–13 (2021)
Chen, X., Zhang, Y., Wang, Y., Shu, H., Xu, C., Xu, C.: Optical flow distillation: Towards efficient and stable video style transfer. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
Cheng, X., Chen, Z.: Video frame interpolation via deformable separable convolution. In: AAAI Conference on Artificial Intelligence (2020)
Cheng, X., Chen, Z.: Multiple video frame interpolation via enhanced deformable separable convolution. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2021). https://doi.org/10.1109/TPAMI.2021.3100714
Choi, M., Kim, H., Han, B., Xu, N., Lee, K.M.: Channel attention is all you need for video frame interpolation. In: AAAI Conference on Artificial Intelligence (2020)
Danier, D., Zhang, F., Bull, D.: Spatio-temporal multi-flow network for video frame interpolation. arXiv preprint arXiv:2111.15483 (2021)
Ding, L., Goshtasby, A.: On the canny edge detector. Pattern Recogn. 34(3), 721–725 (2001)
Ding, T., Liang, L., Zhu, Z., Zharkov, I.: CDFI: compression-driven network design for frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Dosovitskiy, A., et al.: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Huang, Z., Heng, W., Zhou, S.: Learning to paint with model-based deep reinforcement learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)
Hui, T.W., Tang, X., Change Loy, C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Ilg, E., et al.: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A.: What matters in unsupervised optical flow. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
Kalluri, T., Pathak, D., Chandraker, M., Tran, D.: FLAVR: Flow-agnostic video representations for fast frame interpolation. arXiv preprint arXiv:2012.08512 (2020)
Kong, L., et al.: IfrNet: intermediate feature refine network for efficient frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Proceedings of the IEEE International Conference on Machine Learning Workshops (ICMLW) (2013)
Lee, H., Kim, T., Chung, T.y., Pak, D., Ban, Y., Lee, S.: AdaCOF: adaptive collaboration of flows for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Liu, Y., Xie, L., Siyao, L., Sun, W., Qiao, Y., Dong, C.: Enhanced quadratic video interpolation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
Liu, Y.L., Liao, Y.T., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation using cyclic frame generation. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI) (2019)
Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Lopez-Paz, D., Bottou, L., Schölkopf, B., Vapnik, V.: Unifying distillation and privileged information. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)
Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam. arXiv preprint arXiv:1711.05101 (2017)
Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: DVC: an end-to-end deep video compression framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Lu, L., Wu, R., Lin, H., Lu, J., Jia, J.: Video frame interpolation with transformer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Luo, K., Wang, C., Liu, S., Fan, H., Wang, J., Sun, J.: UPFlow: upsampling pyramid for unsupervised optical flow learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European conference on computer vision (ECCV) (2018)
Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: AAAI Conference on Artificial Intelligence (2018)
Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, a.: Phase-based frame interpolation for video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Niklaus, S., Liu, F.: SoftMax splatting for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video frame interpolation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)
Porrello, A., Bergamini, L., Calderara, S.: Robust re-identification by multiple views knowledge distillation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2020)
Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Reda, F., Kontkanen, J., Tabellion, E., Sun, D., Pantofaru, C., Curless, B.: Frame interpolation for large motion. arXiv (2022)
Reda, F.A., et al.: Unsupervised video interpolation using cycle consistency. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)
Sim, H., Oh, J., Kim, M.: XVFI: extreme video frame interpolation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)
Siyao, L., et al.: Deep animation video interpolation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Sun, S., Kuang, Z., Sheng, L., Ouyang, W., Zhang, W.: Optical flow guided feature: a fast and robust motion representation for video action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)
Wu, C.Y., Singhal, N., Krahenbuhl, P.: Video compression through image interpolation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Wu, Y., Wen, Q., Chen, Q.: Optimizing video prediction via video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-MO: fast and accurate one-stage space-time video super-resolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Xu, G., Xu, J., Li, Z., Wang, L., Sun, X., Cheng, M.: Temporal modulation network for controllable space-time video super-resolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Xu, X., Siyao, L., Sun, W., Yin, Q., Yang, M.H.: Quadratic video interpolation. In: Advances in Neural Information Processing Systems (NIPS) (2019)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. In: International Journal of Computer Vision (IJCV) (2019)
Yuan, S., Stenger, B., Kim, T.K.: RGB-based 3d hand pose estimation via privileged learning with depth images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW) (2019)
Zhao, Z., Wu, Z., Zhuang, Y., Li, B., Jia, J.: Tracking objects as pixel-wise distributions. In: Proceedings of the European conference on computer vision (ECCV) (2022)
Zhou, M., Bai, Y., Zhang, W., Zhao, T., Mei, T.: Responsive listening head generation: a benchmark dataset and baseline. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)
Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)
Acknowledgement
This work is supported by National Key R &D Program of China (2021ZD0109803) and National Natural Science Foundation of China under Grant No. 62136001, 62088102.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S. (2022). Real-Time Intermediate Flow Estimation for Video Frame Interpolation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)