Abstract
Face manipulation methods can be misused to affect an individual’s privacy or to spread disinformation. To this end, we introduce a novel data-driven approach that produces image-specific perturbations which are embedded in the original images. The key idea is that these protected images prevent face manipulation by causing the manipulation model to produce a predefined manipulation target (uniformly colored output image in our case) instead of the actual manipulation. In addition, we propose to leverage differentiable compression approximation, hence making generated perturbations robust to common image compression. In order to prevent against multiple manipulation methods simultaneously, we further propose a novel attention-based fusion of manipulation-specific perturbations. Compared to traditional adversarial attacks that optimize noise patterns for each image individually, our generalized model only needs a single forward pass, thus running orders of magnitude faster and allowing for easy integration in image processing stacks, even on resource-constrained devices like smartphones (Project Page: https://shivangi-aneja.github.io/projects/tafim).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Maisy Kinsley fake account. https://twitter.com/sokane1/status/1111023838467362816. Accessed 27 Mar 2019
Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video forgery detection network (2018). https://doi.org/10.1109/wifs.2018.8630761
Agarwal, S., Farid, H.: Photo forensics from jpeg dimples. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2017). https://doi.org/10.1109/WIFS.2017.8267641
Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, p. 8. IEEE, Long Beach (2019)
Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: CVPR Workshops (2019)
Aneja, S., Nießner, M.: Generalized Zero and few-shot transfer for facial forgery detection. ArXiv preprint arXiv:2006.11863 (2020)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm
Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: an efficient framework for high fidelity face swapping. In: MM 2020: The 28th ACM International Conference on Multimedia, pp. 2003–2011. ACM (2020)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Cozzolino, D., Rössler, A., Thies, J., Nießner, M., Verdoliva, L.: Id-reveal: identity-aware deepfake video detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15108–15117 (2021)
Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: Forensictransfer: Weakly-supervised domain adaptation for forgery detection. arXiv (2018)
Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer, C.C.: The deepfake detection challenge (dfdc) dataset (2020)
Dong, Y., et al.: Boosting adversarial attacks with momentum. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9185–9193 (2018)
Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012). https://doi.org/10.1109/TIFS.2012.2202227
Fischer, V., Kumar, M.C., Metzen, J.H., Brox, T.: Adversarial examples for semantic image segmentation (2017)
Gafni, G., Thies, J., Zollhöfer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8649–8658 (2021)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015)
Huang, Q., Zhang, J., Zhou, W., WeimingZhang, Yu, N.: Initiative defense against facial manipulation (2021)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb
Karras, T., et al.: Alias-free generative adversarial networks. In: Proceedings of NeurIPS (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) (2018)
Korus, P., Memon, N.: Content authentication for neural imaging pipelines: end-to-end optimization of photo provenance in complex distribution channels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. ArXiv abs/1611.01236 (2017)
Li, L., et al.: Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001–5010 (2020)
Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts (2018)
Li, Y., Yang, X., Wu, B., Lyu, S.: Hiding faces in plain sight: disrupting AI face synthesis with adversarial perturbations. ArXiv abs/1906.09288 (2019)
Luo, X., Zhan, R., Chang, H., Yang, F., Milanfar, P.: Distortion agnostic deep watermarking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13545–13554 (2020)
Lyu, S., Pan, X., Zhang, X.: Exposing region splicing forgeries with blind local noise estimation. Int. J. Comput. Vision 110(2), 202–221 (2014)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. ArXiv abs/1706.06083 (2018)
Metzen, J.H., Kumar, M.C., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation (2017). https://arxiv.org/abs/1704.05712
Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (July 2017)
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582 (2016)
Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: using capsule networks to detect forged images and videos. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019). https://doi.org/10.1109/icassp.2019.8682602
Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7184–7193 (2019)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Gaugan: semantic image synthesis with spatially adaptive normalization. In: ACM SIGGRAPH 2019 Real-Time Live! SIGGRAPH 2019. Association for Computing Machinery, New York (2019)
Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: Styleclip: text-driven manipulation of stylegan imagery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2085–2094 (2021)
Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4422–4431 (2018)
Richardson, E., et al.: Encoding in style: a stylegan encoder for image-to-image translation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: International Conference on Computer Vision (ICCV) (2019)
Ruiz, N., Bargal, S.A., Sclaroff, S.: Disrupting deepfakes: adversarial attacks against conditional image translation networks and facial manipulation systems (2020)
Shin, R.: Jpeg-resistant adversarial images (2017)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Conference on Neural Information Processing Systems (NeurIPS) (2019)
Sun, P., Li, Y., Qi, H., Lyu, S.: Landmark breaker: obstructing deepfake by disturbing landmark extraction. In: 2020 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2020). https://doi.org/10.1109/WIFS49906.2020.9360910
Szegedy, C., et al.: Intriguing properties of neural networks (2014)
Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: invisible hyperlinks in physical photographs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of rgb videos. In: Proceedings of Computer Vision and Pattern Recognition (CVPR). IEEE (2016)
Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38, 1–12 (2019)
Wallace, G.K.: The jpeg still picture compression standard. IEEE Trans. Cons. Electron. 38(1), xviii–xxxiv (1992)
Wang, R., Juefei-Xu, F., Luo, M., Liu, Y., Wang, L.: Faketagger: robust safeguards against deepfake dissemination via provenance tracking (2021)
Wengrowski, E., Dana, K.: Light field messaging with deep photographic steganography. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1515–1524 (2019)
Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: International Conference on Computer Vision. IEEE (2017)
Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019). https://doi.org/10.1109/icassp.2019.8683164
Yang, Y., Liang, C., He, H., Cao, X., Gong, N.Z.: Faceguard: proactive deepfake detection (2021)
Yeh, C.Y., Chen, H., Tsai, S.L., Wang, S.D.: Disrupting image-translation-based deepfake algorithms with adversarial attacks. In: 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 53–62 (2020)
Yeh, C.Y., Chen, H.W., Shuai, H.H., Yang, D.N., Chen, M.S.: Attack as the best defense: Nullifying image-to-image translation gans via limit-aware adversarial attack. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16188–16197 (2021)
Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models (2019)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection (2017). https://doi.org/10.1109/cvprw.2017.229
Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: ECCV (2018)
Acknowledgment
This work is supported by a TUM-IAS Rudolf Mößbauer Fellowship, the ERC Starting Grant Scan2CAD (804724), and Sony Semiconductor Solutions Corporation. We would also like to thank Angela Dai for video voice over.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aneja, S., Markhasin, L., Nießner, M. (2022). TAFIM: Targeted Adversarial Attacks Against Facial Image Manipulations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)