Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TAFIM: Targeted Adversarial Attacks Against Facial Image Manipulations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13674))

Included in the following conference series:

Abstract

Face manipulation methods can be misused to affect an individual’s privacy or to spread disinformation. To this end, we introduce a novel data-driven approach that produces image-specific perturbations which are embedded in the original images. The key idea is that these protected images prevent face manipulation by causing the manipulation model to produce a predefined manipulation target (uniformly colored output image in our case) instead of the actual manipulation. In addition, we propose to leverage differentiable compression approximation, hence making generated perturbations robust to common image compression. In order to prevent against multiple manipulation methods simultaneously, we further propose a novel attention-based fusion of manipulation-specific perturbations. Compared to traditional adversarial attacks that optimize noise patterns for each image individually, our generalized model only needs a single forward pass, thus running orders of magnitude faster and allowing for easy integration in image processing stacks, even on resource-constrained devices like smartphones (Project Page: https://shivangi-aneja.github.io/projects/tafim).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maisy Kinsley fake account. https://twitter.com/sokane1/status/1111023838467362816. Accessed 27 Mar 2019

  2. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video forgery detection network (2018). https://doi.org/10.1109/wifs.2018.8630761

  3. Agarwal, S., Farid, H.: Photo forensics from jpeg dimples. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2017). https://doi.org/10.1109/WIFS.2017.8267641

  4. Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, p. 8. IEEE, Long Beach (2019)

    Google Scholar 

  5. Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: CVPR Workshops (2019)

    Google Scholar 

  6. Aneja, S., Nießner, M.: Generalized Zero and few-shot transfer for facial forgery detection. ArXiv preprint arXiv:2006.11863 (2020)

  7. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm

  8. Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: an efficient framework for high fidelity face swapping. In: MM 2020: The 28th ACM International Conference on Multimedia, pp. 2003–2011. ACM (2020)

    Google Scholar 

  9. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  10. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  11. Cozzolino, D., Rössler, A., Thies, J., Nießner, M., Verdoliva, L.: Id-reveal: identity-aware deepfake video detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15108–15117 (2021)

    Google Scholar 

  12. Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: Forensictransfer: Weakly-supervised domain adaptation for forgery detection. arXiv (2018)

    Google Scholar 

  13. Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer, C.C.: The deepfake detection challenge (dfdc) dataset (2020)

    Google Scholar 

  14. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9185–9193 (2018)

    Google Scholar 

  15. Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012). https://doi.org/10.1109/TIFS.2012.2202227

    Article  Google Scholar 

  16. Fischer, V., Kumar, M.C., Metzen, J.H., Brox, T.: Adversarial examples for semantic image segmentation (2017)

    Google Scholar 

  17. Gafni, G., Thies, J., Zollhöfer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8649–8658 (2021)

    Google Scholar 

  18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015)

    Google Scholar 

  19. Huang, Q., Zhang, J., Zhou, W., WeimingZhang, Yu, N.: Initiative defense against facial manipulation (2021)

    Google Scholar 

  20. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb

  21. Karras, T., et al.: Alias-free generative adversarial networks. In: Proceedings of NeurIPS (2021)

    Google Scholar 

  22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2019)

    Google Scholar 

  23. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  24. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) (2018)

    Google Scholar 

  25. Korus, P., Memon, N.: Content authentication for neural imaging pipelines: end-to-end optimization of photo provenance in complex distribution channels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  26. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. ArXiv abs/1611.01236 (2017)

    Google Scholar 

  27. Li, L., et al.: Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001–5010 (2020)

    Google Scholar 

  28. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts (2018)

    Google Scholar 

  29. Li, Y., Yang, X., Wu, B., Lyu, S.: Hiding faces in plain sight: disrupting AI face synthesis with adversarial perturbations. ArXiv abs/1906.09288 (2019)

    Google Scholar 

  30. Luo, X., Zhan, R., Chang, H., Yang, F., Milanfar, P.: Distortion agnostic deep watermarking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13545–13554 (2020)

    Google Scholar 

  31. Lyu, S., Pan, X., Zhang, X.: Exposing region splicing forgeries with blind local noise estimation. Int. J. Comput. Vision 110(2), 202–221 (2014)

    Article  Google Scholar 

  32. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. ArXiv abs/1706.06083 (2018)

    Google Scholar 

  33. Metzen, J.H., Kumar, M.C., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation (2017). https://arxiv.org/abs/1704.05712

  34. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (July 2017)

    Google Scholar 

  35. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582 (2016)

    Google Scholar 

  36. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: using capsule networks to detect forged images and videos. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019). https://doi.org/10.1109/icassp.2019.8682602

  37. Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7184–7193 (2019)

    Google Scholar 

  38. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Gaugan: semantic image synthesis with spatially adaptive normalization. In: ACM SIGGRAPH 2019 Real-Time Live! SIGGRAPH 2019. Association for Computing Machinery, New York (2019)

    Google Scholar 

  39. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: Styleclip: text-driven manipulation of stylegan imagery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2085–2094 (2021)

    Google Scholar 

  40. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4422–4431 (2018)

    Google Scholar 

  41. Richardson, E., et al.: Encoding in style: a stylegan encoder for image-to-image translation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  43. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  44. Ruiz, N., Bargal, S.A., Sclaroff, S.: Disrupting deepfakes: adversarial attacks against conditional image translation networks and facial manipulation systems (2020)

    Google Scholar 

  45. Shin, R.: Jpeg-resistant adversarial images (2017)

    Google Scholar 

  46. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Conference on Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  47. Sun, P., Li, Y., Qi, H., Lyu, S.: Landmark breaker: obstructing deepfake by disturbing landmark extraction. In: 2020 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2020). https://doi.org/10.1109/WIFS49906.2020.9360910

  48. Szegedy, C., et al.: Intriguing properties of neural networks (2014)

    Google Scholar 

  49. Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: invisible hyperlinks in physical photographs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  50. Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of rgb videos. In: Proceedings of Computer Vision and Pattern Recognition (CVPR). IEEE (2016)

    Google Scholar 

  51. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38, 1–12 (2019)

    Google Scholar 

  52. Wallace, G.K.: The jpeg still picture compression standard. IEEE Trans. Cons. Electron. 38(1), xviii–xxxiv (1992)

    Google Scholar 

  53. Wang, R., Juefei-Xu, F., Luo, M., Liu, Y., Wang, L.: Faketagger: robust safeguards against deepfake dissemination via provenance tracking (2021)

    Google Scholar 

  54. Wengrowski, E., Dana, K.: Light field messaging with deep photographic steganography. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1515–1524 (2019)

    Google Scholar 

  55. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: International Conference on Computer Vision. IEEE (2017)

    Google Scholar 

  56. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019). https://doi.org/10.1109/icassp.2019.8683164

  57. Yang, Y., Liang, C., He, H., Cao, X., Gong, N.Z.: Faceguard: proactive deepfake detection (2021)

    Google Scholar 

  58. Yeh, C.Y., Chen, H., Tsai, S.L., Wang, S.D.: Disrupting image-translation-based deepfake algorithms with adversarial attacks. In: 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 53–62 (2020)

    Google Scholar 

  59. Yeh, C.Y., Chen, H.W., Shuai, H.H., Yang, D.N., Chen, M.S.: Attack as the best defense: Nullifying image-to-image translation gans via limit-aware adversarial attack. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16188–16197 (2021)

    Google Scholar 

  60. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models (2019)

    Google Scholar 

  61. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  62. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection (2017). https://doi.org/10.1109/cvprw.2017.229

  63. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: ECCV (2018)

    Google Scholar 

Download references

Acknowledgment

This work is supported by a TUM-IAS Rudolf Mößbauer Fellowship, the ERC Starting Grant Scan2CAD (804724), and Sony Semiconductor Solutions Corporation. We would also like to thank Angela Dai for video voice over.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivangi Aneja .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2326 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aneja, S., Markhasin, L., Nießner, M. (2022). TAFIM: Targeted Adversarial Attacks Against Facial Image Manipulations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19781-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19780-2

  • Online ISBN: 978-3-031-19781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics