Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unbiased Manifold Augmentation for Coarse Class Subdivision

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13685))

Included in the following conference series:

Abstract

Coarse Class Subdivision (CCS) is important for many practical applications, where the training set originally annotated for a coarse class (e.g. bird) needs to further support its sub-classes recognition (e.g. swan, crow) with only very few fine-grained labeled samples. From the perspective of causal representation learning, these sub-classes inherit the same determinative factors of the coarse class, and their difference lies only in values. Therefore, to support the challenging CCS task with minimum fine-grained labeling cost, an ideal data augmentation method should generate abundant variants by manipulating these sub-class samples at the granularity of generating factors. For this goal, traditional data augmentation methods are far from sufficient. They often perform in highly-coupled image or feature space, thus can only simulate global geometric or photometric transformations. Leveraging the recent progress of factor-disentangled generators, Unbiased Manifold Augmentation (UMA) is proposed for CCS. With a controllable StyleGAN pre-trained for a coarse class, an approximate unbiased augmentation is conducted on the factor-disentangled manifolds for each sub-class, revealing the unbiased mutual information between the target sub-class and its determinative factors. Extensive experiments have shown that in the case of small data learning (less than 1% fine-grained samples of commonly used), our UMA can achieve 10.37% average improvement compared with existing data augmentation methods. On challenging tasks with severe bias, the accuracy is improved by up to 16.79%. We release our code at https://github.com/leo-gb/UMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Celeba. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

  2. Cub-200-2011. https://www.vision.caltech.edu/visipedia/CUB-200-2011.html

  3. ffhq-dataset. https://github.com/NVlabs/ffhq-dataset

  4. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  8. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: discovering interpretable GAN controls. In: Advances in Neural Information Processing Systems 33, pp. 9841–9850 (2020)

    Google Scholar 

  9. Hong, M., Choi, J., Kim, G.: StyleMix: separating content and style for enhanced data augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14862–14870 (2021)

    Google Scholar 

  10. Huang, S., Wang, X., Tao, D.: Stochastic partial swap: enhanced model generalization and interpretability for fine-grained recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 620–629 (2021)

    Google Scholar 

  11. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  12. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  13. Li, B., Wu, F., Lim, S.N., Belongie, S., Weinberger, K.Q.: On feature normalization and data augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12383–12392 (2021)

    Google Scholar 

  14. Li, Y., et al.: Shape-texture debiased neural network training. arXiv preprint arXiv:2010.05981 (2020)

  15. Lin, J., Zhang, R., Ganz, F., Han, S., Zhu, J.Y.: Anycost GANs for interactive image synthesis and editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14986–14996 (2021)

    Google Scholar 

  16. Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14933–14943 (2021)

    Google Scholar 

  17. Rao, Y., Chen, G., Lu, J., Zhou, J.: Counterfactual attention learning for fine-grained visual categorization and re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1025–1034 (2021)

    Google Scholar 

  18. Richardson, E., et al.: Encoding in style: a StyleGAN encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2287–2296 (2021)

    Google Scholar 

  19. Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. arXiv preprint arXiv:2106.05744 (2021)

  20. Schölkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109(5), 612–634 (2021)

    Article  Google Scholar 

  21. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems 33, pp. 596–608 (2020)

    Google Scholar 

  22. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with deep neural networks: a survey. arXiv preprint arXiv:2007.08199 (2020)

  23. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder for StyleGAN image manipulation. ACM Trans. Graph. (TOG) 40(4), 1–14 (2021)

    Article  Google Scholar 

  24. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  25. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  26. Yue, Z., Wang, T., Sun, Q., Hua, X.S., Zhang, H.: Counterfactual zero-shot and open-set visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15404–15414 (2021)

    Google Scholar 

  27. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  28. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  29. Zheng, X., Chalasani, T., Ghosal, K., Lutz, S., Smolic, A.: STaDA: Style transfer as data augmentation. arXiv preprint arXiv:1909.01056 (2019)

  30. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, B., Gao, K., Gao, B., Wang, L., Yang, J., Li, X. (2022). Unbiased Manifold Augmentation for Coarse Class Subdivision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13685. Springer, Cham. https://doi.org/10.1007/978-3-031-19806-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19806-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19805-2

  • Online ISBN: 978-3-031-19806-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics