Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

\(\mathrm {D^2ADA}\): Dynamic Density-Aware Active Domain Adaptation for Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

Abstract

In the field of domain adaptation, a trade-off exists between the model performance and the number of target domain annotations. Active learning, maximizing model performance with few informative labeled data, comes in handy for such a scenario. In this work, we present \(\mathbf {D^2ADA}\), a general active domain adaptation framework for semantic segmentation. To adapt the model to the target domain with minimum queried labels, we propose acquiring labels of the samples with high probability density in the target domain yet with low probability density in the source domain, complementary to the existing source domain labeled data. To further facilitate labeling efficiency, we design a dynamic scheduling policy to adjust the labeling budgets between domain exploration and model uncertainty over time. Extensive experiments show that our method outperforms existing active learning and domain adaptation baselines on two benchmarks, GTA5 \(\rightarrow \) Cityscapes and SYNTHIA \(\rightarrow \) Cityscapes. With less than 5% target domain annotations, our method reaches comparable results with that of full supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We report the official results of the UDA, WDA, SSDA and ADA methods and train the DeepLabV2 and DeepLabV3+ ourselves.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: ICLR (2020)

    Google Scholar 

  3. Casanova, A., Pinheiro, P.O., Rostamzadeh, N., Pal, C.J.: Reinforced active learning for image segmentation. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=SkgC6TNFvr

  4. Chang, W.L., Wang, H.P., Peng, W.H., Chiu, W.C.: All about structure: adapting structural information across domains for boosting semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1900–1909 (2019)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K.P., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. CoRR abs/1412.7062 (2015)

    Google Scholar 

  7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  8. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  9. Chen, S., Jia, X., He, J., Shi, Y., Liu, J.: Semi-supervised domain adaptation based on dual-level domain mixing for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11018–11027 (2021)

    Google Scholar 

  10. Cheng, Y., Wei, F., Bao, J., Chen, D., Wen, F., Zhang, W.: Dual path learning for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9082–9091 (2021)

    Google Scholar 

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  12. Du, L., et al.: SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 982–991 (2019)

    Google Scholar 

  13. Fu, B., Cao, Z., Wang, J., Long, M.: Transferable query selection for active domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7272–7281 (2021)

    Google Scholar 

  14. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  15. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192 (2017)

    Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. SSS, vol. 2. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler divergence between gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 4, pp. 4-317. IEEE (2007)

    Google Scholar 

  19. Kasarla, T., Nagendar, G., Hegde, G.M., Balasubramanian, V., Jawahar, C.: Region-based active learning for efficient labeling in semantic segmentation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1109–1117. IEEE (2019)

    Google Scholar 

  20. Kim, M., Byun, H.: Learning texture invariant representation for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984 (2020)

    Google Scholar 

  21. Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBald: efficient and diverse batch acquisition for deep Bayesian active learning. In: Advances in Neural Information Processing Systems, pp. 7026–7037 (2019)

    Google Scholar 

  22. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, pp. 1925–1934 (2017)

    Google Scholar 

  23. Liu, Y., Deng, J., Gao, X., Li, W., Duan, L.: BAPA-Net: boundary adaptation and prototype alignment for cross-domain semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8801–8811 (2021)

    Google Scholar 

  24. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2507–2516 (2019)

    Google Scholar 

  25. Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: CEREALS - cost-effective region-based active learning for semantic segmentation. In: British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, 3–6 September 2018, p. 121. BMVA Press (2018). https://bmvc2018.org/contents/papers/0437.pdf

  26. Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 415–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_25

    Chapter  Google Scholar 

  27. Nguyen, A.T., Tran, T., Gal, Y., Torr, P., Baydin, A.G.: KL guided domain adaptation. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=0JzqUlIVVDd

  28. Ning, M., et al.: Multi-anchor active domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9112–9122 (2021)

    Google Scholar 

  29. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. Adv. Neural. Inf. Process. Syst. 32, 1–11 (2019)

    Google Scholar 

  30. Paul, S., Tsai, Y.-H., Schulter, S., Roy-Chowdhury, A.K., Chandraker, M.: Domain adaptive semantic segmentation using weak labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 571–587. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_33

    Chapter  Google Scholar 

  31. Prabhu, V., Chandrasekaran, A., Saenko, K., Hoffman, J.: Active domain adaptation via clustering uncertainty-weighted embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8505–8514 (2021)

    Google Scholar 

  32. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  33. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The Synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  34. Roth, D., Small, K.: Margin-based active learning for structured output spaces. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 413–424. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_40

    Chapter  Google Scholar 

  35. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1aIuk-RW

  36. Shin, I., Kim, D.J., Cho, J.W., Woo, S., Park, K., Kweon, I.S.: Labor: labeling only if required for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8588–8598 (2021)

    Google Scholar 

  37. Shin, I., Woo, S., Pan, F., Kweon, I.S.: Two-phase pseudo label densification for self-training based domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 532–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_32

    Chapter  Google Scholar 

  38. Siddiqui, Y., Valentin, J., Nießner, M.: ViewAL: active learning with viewpoint entropy for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9433–9443 (2020)

    Google Scholar 

  39. Singh, A., et al.: Improving semi-supervised domain adaptation using effective target selection and semantics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2709–2718 (2021)

    Google Scholar 

  40. Su, J.C., Tsai, Y.H., Sohn, K., Liu, B., Maji, S., Chandraker, M.: Active adversarial domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 739–748 (2020)

    Google Scholar 

  41. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  42. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  43. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  44. Wang, D., Shang, Y.: A new active labeling method for deep learning. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 112–119 (2014). https://doi.org/10.1109/IJCNN.2014.6889457

  45. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2020)

    Article  Google Scholar 

  46. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  47. Wang, Y., Peng, J., Zhang, Z.: Uncertainty-aware pseudo label refinery for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9092–9101 (2021)

    Google Scholar 

  48. Wang, Z., et al.: Alleviating semantic-level shift: a semi-supervised domain adaptation method for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 936–937 (2020)

    Google Scholar 

  49. Wang, Z., et al.: Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12635–12644 (2020)

    Google Scholar 

  50. Wu, T.H., et al.: ReDAL: region-based and diversity-aware active learning for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15510–15519 (2021)

    Google Scholar 

  51. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X.: Towards fewer annotations: active learning via region impurity and prediction uncertainty for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8068–8078 (2022)

    Google Scholar 

  52. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X., Wang, G.: Active learning for domain adaptation: an energy-based approach. In: Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-2022) (2022)

    Google Scholar 

  53. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)

    Google Scholar 

  54. Yuan, Y., Chen, X., Wang, J.: Segmentation transformer: object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  55. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12414–12424 (2021)

    Google Scholar 

  56. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  57. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vision 129(4), 1106–1120 (2021)

    Article  Google Scholar 

  58. Zhou, F., Shui, C., Yang, S., Huang, B., Wang, B., Chaib-draa, B.: Discriminative active learning for domain adaptation. Knowl. Based Syst. 222, 106986 (2021)

    Article  Google Scholar 

  59. Zhou, Q., et al.: Context-aware mixup for domain adaptive semantic segmentation. arXiv preprint arXiv:2108.03557 (2021)

  60. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  61. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 110-2634-F-002-051, Mobile Drive Technology Co., Ltd (MobileDrive), and Industrial Technology Research Institute (ITRI). We are grateful to the National Center for High-performance Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Han Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1830 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, TH. et al. (2022). \(\mathrm {D^2ADA}\): Dynamic Density-Aware Active Domain Adaptation for Semantic Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics