Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TransFGU: A Top-Down Approach to Fine-Grained Unsupervised Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

Abstract

Unsupervised semantic segmentation aims to obtain high-level semantic representation on low-level visual features without manual annotations. Most existing methods are bottom-up approaches that try to group pixels into regions based on their visual cues or certain predefined rules. As a result, it is difficult for these bottom-up approaches to generate fine-grained semantic segmentation when coming to complicated scenes with multiple objects and some objects sharing similar visual appearance. In contrast, we propose the first top-down unsupervised semantic segmentation framework for fine-grained segmentation in extremely complicated scenarios. Specifically, we first obtain rich high-level structured semantic concept information from large-scale vision data in a self-supervised learning manner, and use such information as a prior to discover potential semantic categories presented in target datasets. Secondly, the discovered high-level semantic categories are mapped to low-level pixel features by calculating the class activate map (CAM) with respect to certain discovered semantic representation. Lastly, the obtained CAMs serve as pseudo labels to train the segmentation module and produce the final semantic segmentation. Experimental results on multiple semantic segmentation benchmarks show that our top-down unsupervised segmentation is robust to both object-centric and scene-centric datasets under different semantic granularity levels, and outperforms all the current state-of-the-art bottom-up methods. Our code is available at https://github.com/damo-cv/TransFGU.

Z. Yin—Work done during an internship at Alibaba Group.

P. Wang—Project lead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdal, R., Zhu, P., Mitra, N., Wonka, P.: Labels4Free: unsupervised segmentation using StyleGAN. arXiv preprint arXiv:2103.14968 (2021)

  2. Bielski, A., Favaro, P.: Emergence of object segmentation in perturbed generative models. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 7256–7266 (2019)

    Google Scholar 

  3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  4. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  5. Chefer, H., Gur, S., Wolf, L.: Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 782–791 (2021)

    Google Scholar 

  6. Chen, M., Artières, T., Denoyer, L.: Unsupervised object segmentation by redrawing. In: Advances in Neural Information Processing Systems 32 (NIPS 2019), pp. 12705–12716. Curran Associates, Inc. (2019)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  9. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  10. Cho, J.H., Mall, U., Bala, K., Hariharan, B.: PiCIE: unsupervised semantic segmentation using invariance and equivariance in clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16794–16804 (2021)

    Google Scholar 

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  14. Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 932–940 (2017)

    Google Scholar 

  15. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. In: Neural Information Processing Systems (2020)

    Google Scholar 

  16. Harb, R., Knöbelreiter, P.: InfoSeg: unsupervised semantic image segmentation with mutual information maximization (2021)

    Google Scholar 

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  19. Hwang, J.J., et al.: SegSort: segmentation by discriminative sorting of segments. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7334–7344 (2019)

    Google Scholar 

  20. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  21. Kanezaki, A.: Unsupervised image segmentation by backpropagation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1543–1547. IEEE (2018)

    Google Scholar 

  22. Kim, D., Hong, B.W.: Unsupervised segmentation incorporating shape prior via generative adversarial networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7324–7334 (2021)

    Google Scholar 

  23. Kim, W., Kanezaki, A., Tanaka, M.: Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans. Image Process. 29, 8055–8068 (2020)

    Article  Google Scholar 

  24. Li, C., et al.: Efficient self-supervised vision transformers for representation learning. arXiv preprint arXiv:2106.09785 (2021)

  25. Li, X., et al.: Dense semantic contrast for self-supervised visual representation learning. arXiv preprint arXiv:2109.07756 (2021)

  26. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Liu, Y., Guo, H.: Peer loss functions: learning from noisy labels without knowing noise rates. In: International Conference on Machine Learning, pp. 6226–6236. PMLR (2020)

    Google Scholar 

  28. Mirsadeghi, S.E., Royat, A., Rezatofighi, H.: Unsupervised image segmentation by mutual information maximization and adversarial regularization. IEEE Robot. Autom. Lett. 6(4), 6931–6938 (2021)

    Article  Google Scholar 

  29. Ouali, Y., Hudelot, C., Tami, M.: Autoregressive unsupervised image segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 142–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_9

    Chapter  Google Scholar 

  30. Pinheiro, P.O., Almahairi, A., Benmalek, R.Y., Golemo, F., Courville, A.C.: Unsupervised learning of dense visual representations. In: NeurIPS (2020)

    Google Scholar 

  31. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  32. Shi, X., Khademi, S., Li, Y., van Gemert, J.: Zoom-cam: generating fine-grained pixel annotations from image labels. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10289–10296. IEEE (2021)

    Google Scholar 

  33. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  34. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Van Gool, L.: Unsupervised semantic segmentation by contrasting object mask proposals. In: International Conference on Computer Vision (2021)

    Google Scholar 

  35. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3024–3033 (2021)

    Google Scholar 

  36. Wang, Z., et al.: Exploring set similarity for dense self-supervised representation learning. arXiv preprint arXiv:2107.08712 (2021)

  37. Xie, Z., Lin, Y., Zhang, Z., Cao, Y., Lin, S., Hu, H.: Propagate yourself: exploring pixel-level consistency for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16684–16693 (2021)

    Google Scholar 

  38. Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: a video frame-level similarity perspective. arXiv preprint arXiv:2103.17263 (2021)

  39. Yao, Z., Cao, Y., Lin, Y., Liu, Z., Zhang, Z., Hu, H.: Leveraging batch normalization for vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 413–422 (2021)

    Google Scholar 

  40. Zou, Y., et al.: PseudoSeg: designing pseudo labels for semantic segmentation. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by funds for Key R &D Program of Hunan (2022SK2104), Leading plan for scientific and technological innovation of high-tech industries of Hunan (2022GK4010), the National Natural Science Foundation of Changsha (kq2202176), National Key R &D Program of China (2021YFF0900602), the National Natural Science Foundation of China (61672222) and Alibaba Group through Alibaba Research Intern Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pichao Wang or Hanling Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5694 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, Z. et al. (2022). TransFGU: A Top-Down Approach to Fine-Grained Unsupervised Semantic Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics