Abstract
Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis – the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve \(26\sim 35\times \) FLOPs reduction (per camera ray) and \(28\sim 31\times \) runtime speedup, meanwhile delivering significantly better (\(1.4\sim 2.8\) dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.
Project: https://snap-research.github.io/R2L.
H. Wang—Work done when Huan was an intern at Snap.
Z. Huang—Now at Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adelson, E.H., Bergen, J.R., et al.: The Plenoptic Function and the Elements of Early Vision, vol. 2. MIT Press, Cambridge (1991)
Adelson, E.H., Wang, J.Y.: Single lens stereo with a plenoptic camera. TPAMI 14(2), 99–106 (1992)
Andersson, P., et al.: Flip: a difference evaluator for alternating images. In: Proceedings of the ACM in Computer Graphics and Interactive Techniques (2020)
Attal, B., Huang, J.B., Zollhoefer, M., Kopf, J., Kim, C.: Learning neural light fields with ray-space embedding networks. In: CVPR (2022)
Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS (2014)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. arXiv preprint arXiv:2103.13415 (2021)
Bemana, M., Myszkowski, K., Seidel, H.P., Ritschel, T.: X-fields: implicit neural view-, light-and time-image interpolation. ACMTOG 39(6), 1–15 (2020)
Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: SIGKDD (2006)
Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: NeurIPS (2017)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR (2019)
Dellaert, F., Yen-Chen, L.: Neural volume rendering: nerf and beyond. arXiv preprint arXiv:2101.05204 (2020)
Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: FastNeRF: high-fidelity neural rendering at 200FPS. arXiv preprint arXiv:2103.10380 (2021)
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (1996)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. arXiv preprint arXiv:2103.14645 (2021)
Henriques, J.F., Carreira, J., Caseiro, R., Batista, J.: Beyond hard negative mining: efficient detector learning via block-circulant decomposition. In: CVPR (2013)
Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: AAAI (2019)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS Workshop (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
Jiao, X., et al.: TinyBERT: distilling BERT for natural language understanding. arXiv preprint arXiv:1909.10351 (2019)
Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. SIGGRAPH 18(3), 165–174 (1984)
Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35(6), 1–10 (2016)
Kearns, M.J., Vazirani, U.V., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS (2012)
Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (1996)
Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: CVPR (2021)
Lindell, D.B., Martel, J.N., Wetzstein, G.: Autoint: automatic integration for fast neural volume rendering. In: CVPR (2021)
Liu, C., Li, Z., Yuan, J., Xu, Y.: Neulf: efficient novel view synthesis with neural 4D light field. In: EGSR (2022)
Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: NeurIPS (2020)
Liu, Y., Cao, J., Li, B., Yuan, C., Hu, W., Li, Y., Duan, Y.: Knowledge distillation via instance relationship graph. In: CVPR (2019)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)
Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. 38(4), 1–14 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)
Neff, T., et al.: DONeRF: towards real-time rendering of compact neural radiance fields using depth oracle networks. In: Computer Graphics Forum (2021)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: CVPR (2019)
Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR (2019)
Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge transfer. In: ECCV (2018)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)
Peng, B., et al.: Correlation congruence for knowledge distillation. In: ICCV (2019)
Piala, M., Clark, R.: Terminerf: ray termination prediction for efficient neural rendering. In: 3DV (2021)
Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: Derf: decomposed radiance fields. In: CVPR (2021)
Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs. In: ICCV (2021)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. In: ICLR (2015)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR (2016)
Sitzmann, V., Rezchikov, S., Freeman, W.T., Tenenbaum, J.B., Durand, F.: Light field networks: neural scene representations with single-evaluation rendering. In: NeurIPS (2021)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)
Suhail, M., Esteves, C., Sigal, L., Makadia, A.: Light field neural rendering. In: CVPR (2022)
Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: CVPR (2021)
Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: ICLR (2020)
Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: CVPR (2019)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.H.: Collaborative distillation for ultra-resolution universal style transfer. In: CVPR (2020)
Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. TPAMI (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)
Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: real-time view synthesis with neural basis expansion. In: CVPR (2021)
Yen-Chen, L.: Nerf-pytorch (2020). https://github.com/yenchenlin/nerf-pytorch/
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: ICCV (2021)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR (2021)
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H. et al. (2022). R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-19821-2_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19820-5
Online ISBN: 978-3-031-19821-2
eBook Packages: Computer ScienceComputer Science (R0)