Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis – the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve \(26\sim 35\times \) FLOPs reduction (per camera ray) and \(28\sim 31\times \) runtime speedup, meanwhile delivering significantly better (\(1.4\sim 2.8\) dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.

Project: https://snap-research.github.io/R2L.

H. Wang—Work done when Huan was an intern at Snap.

Z. Huang—Now at Google.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelson, E.H., Bergen, J.R., et al.: The Plenoptic Function and the Elements of Early Vision, vol. 2. MIT Press, Cambridge (1991)

    Google Scholar 

  2. Adelson, E.H., Wang, J.Y.: Single lens stereo with a plenoptic camera. TPAMI 14(2), 99–106 (1992)

    Article  Google Scholar 

  3. Andersson, P., et al.: Flip: a difference evaluator for alternating images. In: Proceedings of the ACM in Computer Graphics and Interactive Techniques (2020)

    Google Scholar 

  4. Attal, B., Huang, J.B., Zollhoefer, M., Kopf, J., Kim, C.: Learning neural light fields with ray-space embedding networks. In: CVPR (2022)

    Google Scholar 

  5. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS (2014)

    Google Scholar 

  6. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. arXiv preprint arXiv:2103.13415 (2021)

  7. Bemana, M., Myszkowski, K., Seidel, H.P., Ritschel, T.: X-fields: implicit neural view-, light-and time-image interpolation. ACMTOG 39(6), 1–15 (2020)

    Google Scholar 

  8. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: SIGKDD (2006)

    Google Scholar 

  9. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: NeurIPS (2017)

    Google Scholar 

  10. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR (2019)

    Google Scholar 

  11. Dellaert, F., Yen-Chen, L.: Neural volume rendering: nerf and beyond. arXiv preprint arXiv:2101.05204 (2020)

  12. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: FastNeRF: high-fidelity neural rendering at 200FPS. arXiv preprint arXiv:2103.10380 (2021)

  13. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (1996)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. arXiv preprint arXiv:2103.14645 (2021)

  16. Henriques, J.F., Carreira, J., Caseiro, R., Batista, J.: Beyond hard negative mining: efficient detector learning via block-circulant decomposition. In: CVPR (2013)

    Google Scholar 

  17. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: AAAI (2019)

    Google Scholar 

  18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS Workshop (2014)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  20. Jiao, X., et al.: TinyBERT: distilling BERT for natural language understanding. arXiv preprint arXiv:1909.10351 (2019)

  21. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. SIGGRAPH 18(3), 165–174 (1984)

    Article  Google Scholar 

  22. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35(6), 1–10 (2016)

    Article  Google Scholar 

  23. Kearns, M.J., Vazirani, U.V., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Book  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  26. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (1996)

    Google Scholar 

  27. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: CVPR (2021)

    Google Scholar 

  28. Lindell, D.B., Martel, J.N., Wetzstein, G.: Autoint: automatic integration for fast neural volume rendering. In: CVPR (2021)

    Google Scholar 

  29. Liu, C., Li, Z., Yuan, J., Xu, Y.: Neulf: efficient novel view synthesis with neural 4D light field. In: EGSR (2022)

    Google Scholar 

  30. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: NeurIPS (2020)

    Google Scholar 

  31. Liu, Y., Cao, J., Li, B., Yuan, C., Hu, W., Li, Y., Duan, Y.: Knowledge distillation via instance relationship graph. In: CVPR (2019)

    Google Scholar 

  32. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  33. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. 38(4), 1–14 (2019)

    Article  Google Scholar 

  34. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  35. Neff, T., et al.: DONeRF: towards real-time rendering of compact neural radiance fields using depth oracle networks. In: Computer Graphics Forum (2021)

    Google Scholar 

  36. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  37. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR (2019)

    Google Scholar 

  38. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge transfer. In: ECCV (2018)

    Google Scholar 

  39. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  40. Peng, B., et al.: Correlation congruence for knowledge distillation. In: ICCV (2019)

    Google Scholar 

  41. Piala, M., Clark, R.: Terminerf: ray termination prediction for efficient neural rendering. In: 3DV (2021)

    Google Scholar 

  42. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: Derf: decomposed radiance fields. In: CVPR (2021)

    Google Scholar 

  43. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs. In: ICCV (2021)

    Google Scholar 

  44. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. In: ICLR (2015)

    Google Scholar 

  45. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR (2016)

    Google Scholar 

  46. Sitzmann, V., Rezchikov, S., Freeman, W.T., Tenenbaum, J.B., Durand, F.: Light field networks: neural scene representations with single-evaluation rendering. In: NeurIPS (2021)

    Google Scholar 

  47. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Suhail, M., Esteves, C., Sigal, L., Makadia, A.: Light field neural rendering. In: CVPR (2022)

    Google Scholar 

  49. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: CVPR (2021)

    Google Scholar 

  50. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: ICLR (2020)

    Google Scholar 

  51. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: CVPR (2019)

    Google Scholar 

  52. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    MATH  Google Scholar 

  53. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  54. Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.H.: Collaborative distillation for ultra-resolution universal style transfer. In: CVPR (2020)

    Google Scholar 

  55. Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. TPAMI (2021)

    Google Scholar 

  56. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)

    Google Scholar 

  57. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: real-time view synthesis with neural basis expansion. In: CVPR (2021)

    Google Scholar 

  58. Yen-Chen, L.: Nerf-pytorch (2020). https://github.com/yenchenlin/nerf-pytorch/

  59. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: ICCV (2021)

    Google Scholar 

  60. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR (2021)

    Google Scholar 

  61. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)

    Google Scholar 

  62. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2022). R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics